Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces
The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quanti...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-03, Vol.14 (12), p.e1703647-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e1703647 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Siles, Pablo F. Devarajulu, Mirunalini Zhu, Feng Schmidt, Oliver G. |
description | The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response ( |
doi_str_mv | 10.1002/smll.201703647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2003043067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003043067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-3801485c5f8597c836e6a241c0f1a4fe539b31c407a46f71805d4e9ef00ceec93</originalsourceid><addsrcrecordid>eNqFkc9OGzEQhy1URFLaK0dkqRcuCeO1d717jFJoIwVxgKrHlZmMg2H_BHtXFbc-Qp-xT1JvQ4LEhZNHnm8-jebH2ImAqQBIzkNdVdMEhAaZKX3AxiITcpLlSfFhXwsYsY8hPABIkSh9xEZJoVIoNIzZ5qvzhB1f1GbtmjVvLb_ZGKS_v__M741fE58h9nVfmc61DTfNiv9s_SO_7Bv8_zNQBjvyLnQOwyDY9UzFr_3aNA75oomEjd7wiR1aUwX6_PIesx-XF7fz75Pl9bfFfLacoNRST2QOQuUppjZPC425zCgziRIIVhhlKZXFnRSoQBuVWS1ySFeKCrIASISFPGZnW-_Gt089ha6sXUCqKtNQ24cyidcAJSHTEf3yBn1oex_XHyihM63jRpGabin0bQiebLnxrjb-uRRQDlmUQxblPos4cPqi7e9qWu3x3fEjUGyBX66i53d05c3Vcvkq_we5Spa4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017677737</pqid></control><display><type>article</type><title>Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Siles, Pablo F. ; Devarajulu, Mirunalini ; Zhu, Feng ; Schmidt, Oliver G.</creator><creatorcontrib>Siles, Pablo F. ; Devarajulu, Mirunalini ; Zhu, Feng ; Schmidt, Oliver G.</creatorcontrib><description>The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.
A complete nanoscale view of surface potential characteristics and a quantitative overview of work function and energy‐level alignment are observed at the interface of functional organic junctions via kelvin probe microscopy approaches. The results open interesting physical perspectives enabling straightforward correlation between morphology and high‐resolution quantification of important electric parameters revealing details like ambipolar characteristics and interface space‐charge carrier regions.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201703647</identifier><identifier>PMID: 29450970</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Charge efficiency ; Charge transfer ; Current carriers ; Electrical properties ; functional organic heterostructures ; interface surface potential ; nanoscale imaging ; Nanotechnology ; scanning kelvin probe microscopy ; Substrates ; Thin films ; work function mapping ; Work functions</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-03, Vol.14 (12), p.e1703647-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-3801485c5f8597c836e6a241c0f1a4fe539b31c407a46f71805d4e9ef00ceec93</citedby><cites>FETCH-LOGICAL-c3737-3801485c5f8597c836e6a241c0f1a4fe539b31c407a46f71805d4e9ef00ceec93</cites><orcidid>0000-0002-1321-2075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201703647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201703647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29450970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siles, Pablo F.</creatorcontrib><creatorcontrib>Devarajulu, Mirunalini</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><title>Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.
A complete nanoscale view of surface potential characteristics and a quantitative overview of work function and energy‐level alignment are observed at the interface of functional organic junctions via kelvin probe microscopy approaches. The results open interesting physical perspectives enabling straightforward correlation between morphology and high‐resolution quantification of important electric parameters revealing details like ambipolar characteristics and interface space‐charge carrier regions.</description><subject>Accumulation</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Electrical properties</subject><subject>functional organic heterostructures</subject><subject>interface surface potential</subject><subject>nanoscale imaging</subject><subject>Nanotechnology</subject><subject>scanning kelvin probe microscopy</subject><subject>Substrates</subject><subject>Thin films</subject><subject>work function mapping</subject><subject>Work functions</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQhy1URFLaK0dkqRcuCeO1d717jFJoIwVxgKrHlZmMg2H_BHtXFbc-Qp-xT1JvQ4LEhZNHnm8-jebH2ImAqQBIzkNdVdMEhAaZKX3AxiITcpLlSfFhXwsYsY8hPABIkSh9xEZJoVIoNIzZ5qvzhB1f1GbtmjVvLb_ZGKS_v__M741fE58h9nVfmc61DTfNiv9s_SO_7Bv8_zNQBjvyLnQOwyDY9UzFr_3aNA75oomEjd7wiR1aUwX6_PIesx-XF7fz75Pl9bfFfLacoNRST2QOQuUppjZPC425zCgziRIIVhhlKZXFnRSoQBuVWS1ySFeKCrIASISFPGZnW-_Gt089ha6sXUCqKtNQ24cyidcAJSHTEf3yBn1oex_XHyihM63jRpGabin0bQiebLnxrjb-uRRQDlmUQxblPos4cPqi7e9qWu3x3fEjUGyBX66i53d05c3Vcvkq_we5Spa4</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Siles, Pablo F.</creator><creator>Devarajulu, Mirunalini</creator><creator>Zhu, Feng</creator><creator>Schmidt, Oliver G.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1321-2075</orcidid></search><sort><creationdate>201803</creationdate><title>Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces</title><author>Siles, Pablo F. ; Devarajulu, Mirunalini ; Zhu, Feng ; Schmidt, Oliver G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-3801485c5f8597c836e6a241c0f1a4fe539b31c407a46f71805d4e9ef00ceec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Electrical properties</topic><topic>functional organic heterostructures</topic><topic>interface surface potential</topic><topic>nanoscale imaging</topic><topic>Nanotechnology</topic><topic>scanning kelvin probe microscopy</topic><topic>Substrates</topic><topic>Thin films</topic><topic>work function mapping</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siles, Pablo F.</creatorcontrib><creatorcontrib>Devarajulu, Mirunalini</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siles, Pablo F.</au><au>Devarajulu, Mirunalini</au><au>Zhu, Feng</au><au>Schmidt, Oliver G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-03</date><risdate>2018</risdate><volume>14</volume><issue>12</issue><spage>e1703647</spage><epage>n/a</epage><pages>e1703647-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.
A complete nanoscale view of surface potential characteristics and a quantitative overview of work function and energy‐level alignment are observed at the interface of functional organic junctions via kelvin probe microscopy approaches. The results open interesting physical perspectives enabling straightforward correlation between morphology and high‐resolution quantification of important electric parameters revealing details like ambipolar characteristics and interface space‐charge carrier regions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29450970</pmid><doi>10.1002/smll.201703647</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1321-2075</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-03, Vol.14 (12), p.e1703647-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2003043067 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation Charge efficiency Charge transfer Current carriers Electrical properties functional organic heterostructures interface surface potential nanoscale imaging Nanotechnology scanning kelvin probe microscopy Substrates Thin films work function mapping Work functions |
title | Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Imaging%20of%20Space%E2%80%90Charge%20Accumulation%20and%20Work%20Function%20Characteristics%20of%20Functional%20Organic%20Interfaces&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Siles,%20Pablo%20F.&rft.date=2018-03&rft.volume=14&rft.issue=12&rft.spage=e1703647&rft.epage=n/a&rft.pages=e1703647-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201703647&rft_dat=%3Cproquest_cross%3E2003043067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017677737&rft_id=info:pmid/29450970&rfr_iscdi=true |