Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy

Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traffic (Copenhagen, Denmark) Denmark), 2018-05, Vol.19 (5), p.354-369
Hauptverfasser: Fermie, Job, Liv, Nalan, ten Brink, Corlinda, van Donselaar, Elly G., Müller, Wally H., Schieber, Nicole L., Schwab, Yannick, Gerritsen, Hans C., Klumperman, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 5
container_start_page 354
container_title Traffic (Copenhagen, Denmark)
container_volume 19
creator Fermie, Job
Liv, Nalan
ten Brink, Corlinda
van Donselaar, Elly G.
Müller, Wally H.
Schieber, Nicole L.
Schwab, Yannick
Gerritsen, Hans C.
Klumperman, Judith
description Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing. Currently, no correlative light‐electron microscopy strategies exist that can link single organelle dynamics to their 3‐dimensional (3D) ultrastructural characteristics. Fermie et al employ a novel correlative workflow using FIB‐SEM to combine dynamic and 3D ultrastructural information of endolysosomal organelles.
doi_str_mv 10.1111/tra.12557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2003041484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023510505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4547-9edc21a10328cb770579c0a4983c705d8f235849c32f89df618220184fa481b3</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhS0EgvKz4ALIEhtYpIwdu7GXqPxKSEjQfeQ6ThVI42InRdlxBM7ISZhSYIGENx5L37yZ50fIIYMhw3PWBjNkXMpsgwzYCCABJcUm1qlWieZM75DdGJ8AgEshtskO10KyjI8GpHmsmlntqA8z07gaq6JvzLyykdZV8-wK2nqaXtDYhs62XXB02lPrQ3C1aaulQ2rpPt7eLfbSam5mKEdNU6x6XO1sG3xDUS74aP2i3ydbpamjO_i-98jk6nIyvknu7q9vx-d3iRVSZIl2heXMMEi5stMsA5lpC0ZolVp8FKrkqVRC25SXShfliCnOgSlRGqHYNN0jJ2vZRfAvnYttPq_iakX06LuYc4AUBBNKIHr8B33yXWhwOaRwCgMJEqnTNbUyEoMr80VAt6HPGeSrDHLMIP_KANmjb8VuOnfFL_nz6QicrYHXqnb9_0r55OF8LfkJco6QSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023510505</pqid></control><display><type>article</type><title>Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy</title><source>MEDLINE</source><source>Wiley Online Library</source><source>EZB Electronic Journals Library</source><creator>Fermie, Job ; Liv, Nalan ; ten Brink, Corlinda ; van Donselaar, Elly G. ; Müller, Wally H. ; Schieber, Nicole L. ; Schwab, Yannick ; Gerritsen, Hans C. ; Klumperman, Judith</creator><creatorcontrib>Fermie, Job ; Liv, Nalan ; ten Brink, Corlinda ; van Donselaar, Elly G. ; Müller, Wally H. ; Schieber, Nicole L. ; Schwab, Yannick ; Gerritsen, Hans C. ; Klumperman, Judith</creatorcontrib><description>Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing. Currently, no correlative light‐electron microscopy strategies exist that can link single organelle dynamics to their 3‐dimensional (3D) ultrastructural characteristics. Fermie et al employ a novel correlative workflow using FIB‐SEM to combine dynamic and 3D ultrastructural information of endolysosomal organelles.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12557</identifier><identifier>PMID: 29451726</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley &amp; Sons A/S</publisher><subject>correlative light‐electron microscopy ; Data processing ; Electron Microscope Tomography - methods ; endolysosomal system ; Endoplasmic reticulum ; focused ion beam scanning electron microscopy ; Green fluorescent protein ; HeLa Cells ; Humans ; Ion beams ; Lysosomal Membrane Proteins - metabolism ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; Membrane proteins ; Membrane trafficking ; Mitochondria ; Optical Imaging - methods ; Organelle Biogenesis ; organelle dynamics ; Organelles ; Physical characteristics ; Scanning electron microscopy ; time‐lapse microscopy ; Ultrastructure ; volume electron microscopy</subject><ispartof>Traffic (Copenhagen, Denmark), 2018-05, Vol.19 (5), p.354-369</ispartof><rights>2018 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4547-9edc21a10328cb770579c0a4983c705d8f235849c32f89df618220184fa481b3</citedby><cites>FETCH-LOGICAL-c4547-9edc21a10328cb770579c0a4983c705d8f235849c32f89df618220184fa481b3</cites><orcidid>0000-0002-7340-0377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftra.12557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftra.12557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29451726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fermie, Job</creatorcontrib><creatorcontrib>Liv, Nalan</creatorcontrib><creatorcontrib>ten Brink, Corlinda</creatorcontrib><creatorcontrib>van Donselaar, Elly G.</creatorcontrib><creatorcontrib>Müller, Wally H.</creatorcontrib><creatorcontrib>Schieber, Nicole L.</creatorcontrib><creatorcontrib>Schwab, Yannick</creatorcontrib><creatorcontrib>Gerritsen, Hans C.</creatorcontrib><creatorcontrib>Klumperman, Judith</creatorcontrib><title>Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing. Currently, no correlative light‐electron microscopy strategies exist that can link single organelle dynamics to their 3‐dimensional (3D) ultrastructural characteristics. Fermie et al employ a novel correlative workflow using FIB‐SEM to combine dynamic and 3D ultrastructural information of endolysosomal organelles.</description><subject>correlative light‐electron microscopy</subject><subject>Data processing</subject><subject>Electron Microscope Tomography - methods</subject><subject>endolysosomal system</subject><subject>Endoplasmic reticulum</subject><subject>focused ion beam scanning electron microscopy</subject><subject>Green fluorescent protein</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Ion beams</subject><subject>Lysosomal Membrane Proteins - metabolism</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>Membrane proteins</subject><subject>Membrane trafficking</subject><subject>Mitochondria</subject><subject>Optical Imaging - methods</subject><subject>Organelle Biogenesis</subject><subject>organelle dynamics</subject><subject>Organelles</subject><subject>Physical characteristics</subject><subject>Scanning electron microscopy</subject><subject>time‐lapse microscopy</subject><subject>Ultrastructure</subject><subject>volume electron microscopy</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1OwzAQhS0EgvKz4ALIEhtYpIwdu7GXqPxKSEjQfeQ6ThVI42InRdlxBM7ISZhSYIGENx5L37yZ50fIIYMhw3PWBjNkXMpsgwzYCCABJcUm1qlWieZM75DdGJ8AgEshtskO10KyjI8GpHmsmlntqA8z07gaq6JvzLyykdZV8-wK2nqaXtDYhs62XXB02lPrQ3C1aaulQ2rpPt7eLfbSam5mKEdNU6x6XO1sG3xDUS74aP2i3ydbpamjO_i-98jk6nIyvknu7q9vx-d3iRVSZIl2heXMMEi5stMsA5lpC0ZolVp8FKrkqVRC25SXShfliCnOgSlRGqHYNN0jJ2vZRfAvnYttPq_iakX06LuYc4AUBBNKIHr8B33yXWhwOaRwCgMJEqnTNbUyEoMr80VAt6HPGeSrDHLMIP_KANmjb8VuOnfFL_nz6QicrYHXqnb9_0r55OF8LfkJco6QSw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Fermie, Job</creator><creator>Liv, Nalan</creator><creator>ten Brink, Corlinda</creator><creator>van Donselaar, Elly G.</creator><creator>Müller, Wally H.</creator><creator>Schieber, Nicole L.</creator><creator>Schwab, Yannick</creator><creator>Gerritsen, Hans C.</creator><creator>Klumperman, Judith</creator><general>John Wiley &amp; Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7340-0377</orcidid></search><sort><creationdate>201805</creationdate><title>Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy</title><author>Fermie, Job ; Liv, Nalan ; ten Brink, Corlinda ; van Donselaar, Elly G. ; Müller, Wally H. ; Schieber, Nicole L. ; Schwab, Yannick ; Gerritsen, Hans C. ; Klumperman, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4547-9edc21a10328cb770579c0a4983c705d8f235849c32f89df618220184fa481b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>correlative light‐electron microscopy</topic><topic>Data processing</topic><topic>Electron Microscope Tomography - methods</topic><topic>endolysosomal system</topic><topic>Endoplasmic reticulum</topic><topic>focused ion beam scanning electron microscopy</topic><topic>Green fluorescent protein</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Ion beams</topic><topic>Lysosomal Membrane Proteins - metabolism</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>Membrane proteins</topic><topic>Membrane trafficking</topic><topic>Mitochondria</topic><topic>Optical Imaging - methods</topic><topic>Organelle Biogenesis</topic><topic>organelle dynamics</topic><topic>Organelles</topic><topic>Physical characteristics</topic><topic>Scanning electron microscopy</topic><topic>time‐lapse microscopy</topic><topic>Ultrastructure</topic><topic>volume electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fermie, Job</creatorcontrib><creatorcontrib>Liv, Nalan</creatorcontrib><creatorcontrib>ten Brink, Corlinda</creatorcontrib><creatorcontrib>van Donselaar, Elly G.</creatorcontrib><creatorcontrib>Müller, Wally H.</creatorcontrib><creatorcontrib>Schieber, Nicole L.</creatorcontrib><creatorcontrib>Schwab, Yannick</creatorcontrib><creatorcontrib>Gerritsen, Hans C.</creatorcontrib><creatorcontrib>Klumperman, Judith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fermie, Job</au><au>Liv, Nalan</au><au>ten Brink, Corlinda</au><au>van Donselaar, Elly G.</au><au>Müller, Wally H.</au><au>Schieber, Nicole L.</au><au>Schwab, Yannick</au><au>Gerritsen, Hans C.</au><au>Klumperman, Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2018-05</date><risdate>2018</risdate><volume>19</volume><issue>5</issue><spage>354</spage><epage>369</epage><pages>354-369</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing. Currently, no correlative light‐electron microscopy strategies exist that can link single organelle dynamics to their 3‐dimensional (3D) ultrastructural characteristics. Fermie et al employ a novel correlative workflow using FIB‐SEM to combine dynamic and 3D ultrastructural information of endolysosomal organelles.</abstract><cop>Former Munksgaard</cop><pub>John Wiley &amp; Sons A/S</pub><pmid>29451726</pmid><doi>10.1111/tra.12557</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7340-0377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1398-9219
ispartof Traffic (Copenhagen, Denmark), 2018-05, Vol.19 (5), p.354-369
issn 1398-9219
1600-0854
language eng
recordid cdi_proquest_miscellaneous_2003041484
source MEDLINE; Wiley Online Library; EZB Electronic Journals Library
subjects correlative light‐electron microscopy
Data processing
Electron Microscope Tomography - methods
endolysosomal system
Endoplasmic reticulum
focused ion beam scanning electron microscopy
Green fluorescent protein
HeLa Cells
Humans
Ion beams
Lysosomal Membrane Proteins - metabolism
Lysosomes - metabolism
Lysosomes - ultrastructure
Membrane proteins
Membrane trafficking
Mitochondria
Optical Imaging - methods
Organelle Biogenesis
organelle dynamics
Organelles
Physical characteristics
Scanning electron microscopy
time‐lapse microscopy
Ultrastructure
volume electron microscopy
title Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20organelle%20dynamics%20linked%20to%203D%20structure%20by%20correlative%20live%E2%80%90cell%20imaging%20and%203D%20electron%20microscopy&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Fermie,%20Job&rft.date=2018-05&rft.volume=19&rft.issue=5&rft.spage=354&rft.epage=369&rft.pages=354-369&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12557&rft_dat=%3Cproquest_cross%3E2023510505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023510505&rft_id=info:pmid/29451726&rfr_iscdi=true