Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation

Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American heart journal 2018-03, Vol.197, p.113-123
Hauptverfasser: Fanning, Jonathon P., Wesley, Allan J., Walters, Darren L., Wong, Andrew A., Barnett, Adrian G., Strugnell, Wendy E., Platts, David G., Fraser, John F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 113
container_title The American heart journal
container_volume 197
creator Fanning, Jonathon P.
Wesley, Allan J.
Walters, Darren L.
Wong, Andrew A.
Barnett, Adrian G.
Strugnell, Wendy E.
Platts, David G.
Fraser, John F.
description Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)–defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena. Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure. Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere. The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected. [Display omitted]
doi_str_mv 10.1016/j.ahj.2017.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2003037844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002870317303940</els_id><sourcerecordid>2007530927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-28537b89ffa8b43916cde9ac730d8557172d32d593689f5ca6af0b23c48db39c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBkbj0ktRfiR1xQhUFpEpcytma2BPWUTYOtrMV_75etnDgwGWskZ731cgPIW8ZbRhl3fXUwH5qOGWqYbyhVD8jO0Z7VXdKyudkRynltVZUXJBXKU1l7bjuXpIL3kuplGI78nAf1vAjwrr3FubK-ZSjH7bsw1KFsVox-lAGZH_EymLEIRbMLyNE-xuClIL1kNFVDz7vqxxhSRbyHjPGCkLM3lZHmEvcH9YZlgyn3GvyYoQ54Zun95J8v_10f_Olvvv2-evNx7vaSi5zzXUr1KD7cQQ9SNGzzjrswSpBnW5bxRR3gru2F12BWgsdjHTgwkrtBtFbcUmuzr1rDD83TNkcfLI4l0MwbMlwSgUVSktZ0Pf_oFPY4lKuO1GqFbTnqlDsTNkYUoo4mjX6A8RfhlFzsmImU6yYkxXDuClWSubdU_M2HND9TfzRUIAPZwDLVxw9RpOsx8Wi8xFtNi74_9Q_AvEBn50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007530927</pqid></control><display><type>article</type><title>Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fanning, Jonathon P. ; Wesley, Allan J. ; Walters, Darren L. ; Wong, Andrew A. ; Barnett, Adrian G. ; Strugnell, Wendy E. ; Platts, David G. ; Fraser, John F.</creator><creatorcontrib>Fanning, Jonathon P. ; Wesley, Allan J. ; Walters, Darren L. ; Wong, Andrew A. ; Barnett, Adrian G. ; Strugnell, Wendy E. ; Platts, David G. ; Fraser, John F.</creatorcontrib><description>Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)–defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena. Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure. Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere. The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected. [Display omitted]</description><identifier>ISSN: 0002-8703</identifier><identifier>EISSN: 1097-6744</identifier><identifier>DOI: 10.1016/j.ahj.2017.12.008</identifier><identifier>PMID: 29447771</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Aged, 80 and over ; Anesthesia ; Aortic valve ; Aortic Valve Stenosis - surgery ; Australia - epidemiology ; Blood clots ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain injury ; Brain research ; Cerebral infarction ; Cerebral Infarction - diagnosis ; Cerebral Infarction - epidemiology ; Cerebral Infarction - etiology ; Cerebrovascular system ; Cortex ; Embolic Protection Devices ; Female ; Heart ; Hemispheric laterality ; Hospitals ; Humans ; Implantation ; Infarction ; Injuries ; Intracranial Embolism - diagnostic imaging ; Intracranial Embolism - etiology ; Intraoperative Complications - epidemiology ; Intraoperative Complications - etiology ; Intraoperative Complications - prevention &amp; control ; Ischemia ; Lesions ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Medical personnel ; Neuroimaging ; Neuropathology ; Neuroprotection ; NMR ; Nuclear magnetic resonance ; Patients ; Performance evaluation ; Postoperative Complications - diagnosis ; Postoperative Complications - epidemiology ; Postoperative Complications - prevention &amp; control ; Stroke ; Substantia grisea ; Surgery ; Thorax ; Transcatheter Aortic Valve Replacement - adverse effects ; Transcatheter Aortic Valve Replacement - methods ; Transplants &amp; implants ; Veins &amp; arteries ; Vertebrae</subject><ispartof>The American heart journal, 2018-03, Vol.197, p.113-123</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-28537b89ffa8b43916cde9ac730d8557172d32d593689f5ca6af0b23c48db39c3</citedby><cites>FETCH-LOGICAL-c424t-28537b89ffa8b43916cde9ac730d8557172d32d593689f5ca6af0b23c48db39c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002870317303940$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29447771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fanning, Jonathon P.</creatorcontrib><creatorcontrib>Wesley, Allan J.</creatorcontrib><creatorcontrib>Walters, Darren L.</creatorcontrib><creatorcontrib>Wong, Andrew A.</creatorcontrib><creatorcontrib>Barnett, Adrian G.</creatorcontrib><creatorcontrib>Strugnell, Wendy E.</creatorcontrib><creatorcontrib>Platts, David G.</creatorcontrib><creatorcontrib>Fraser, John F.</creatorcontrib><title>Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation</title><title>The American heart journal</title><addtitle>Am Heart J</addtitle><description>Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)–defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena. Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure. Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere. The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected. [Display omitted]</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anesthesia</subject><subject>Aortic valve</subject><subject>Aortic Valve Stenosis - surgery</subject><subject>Australia - epidemiology</subject><subject>Blood clots</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain injury</subject><subject>Brain research</subject><subject>Cerebral infarction</subject><subject>Cerebral Infarction - diagnosis</subject><subject>Cerebral Infarction - epidemiology</subject><subject>Cerebral Infarction - etiology</subject><subject>Cerebrovascular system</subject><subject>Cortex</subject><subject>Embolic Protection Devices</subject><subject>Female</subject><subject>Heart</subject><subject>Hemispheric laterality</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Implantation</subject><subject>Infarction</subject><subject>Injuries</subject><subject>Intracranial Embolism - diagnostic imaging</subject><subject>Intracranial Embolism - etiology</subject><subject>Intraoperative Complications - epidemiology</subject><subject>Intraoperative Complications - etiology</subject><subject>Intraoperative Complications - prevention &amp; control</subject><subject>Ischemia</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Neuroimaging</subject><subject>Neuropathology</subject><subject>Neuroprotection</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Postoperative Complications - diagnosis</subject><subject>Postoperative Complications - epidemiology</subject><subject>Postoperative Complications - prevention &amp; control</subject><subject>Stroke</subject><subject>Substantia grisea</subject><subject>Surgery</subject><subject>Thorax</subject><subject>Transcatheter Aortic Valve Replacement - adverse effects</subject><subject>Transcatheter Aortic Valve Replacement - methods</subject><subject>Transplants &amp; implants</subject><subject>Veins &amp; arteries</subject><subject>Vertebrae</subject><issn>0002-8703</issn><issn>1097-6744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhi0EokvhB3BBkbj0ktRfiR1xQhUFpEpcytma2BPWUTYOtrMV_75etnDgwGWskZ731cgPIW8ZbRhl3fXUwH5qOGWqYbyhVD8jO0Z7VXdKyudkRynltVZUXJBXKU1l7bjuXpIL3kuplGI78nAf1vAjwrr3FubK-ZSjH7bsw1KFsVox-lAGZH_EymLEIRbMLyNE-xuClIL1kNFVDz7vqxxhSRbyHjPGCkLM3lZHmEvcH9YZlgyn3GvyYoQ54Zun95J8v_10f_Olvvv2-evNx7vaSi5zzXUr1KD7cQQ9SNGzzjrswSpBnW5bxRR3gru2F12BWgsdjHTgwkrtBtFbcUmuzr1rDD83TNkcfLI4l0MwbMlwSgUVSktZ0Pf_oFPY4lKuO1GqFbTnqlDsTNkYUoo4mjX6A8RfhlFzsmImU6yYkxXDuClWSubdU_M2HND9TfzRUIAPZwDLVxw9RpOsx8Wi8xFtNi74_9Q_AvEBn50</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Fanning, Jonathon P.</creator><creator>Wesley, Allan J.</creator><creator>Walters, Darren L.</creator><creator>Wong, Andrew A.</creator><creator>Barnett, Adrian G.</creator><creator>Strugnell, Wendy E.</creator><creator>Platts, David G.</creator><creator>Fraser, John F.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation</title><author>Fanning, Jonathon P. ; Wesley, Allan J. ; Walters, Darren L. ; Wong, Andrew A. ; Barnett, Adrian G. ; Strugnell, Wendy E. ; Platts, David G. ; Fraser, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-28537b89ffa8b43916cde9ac730d8557172d32d593689f5ca6af0b23c48db39c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anesthesia</topic><topic>Aortic valve</topic><topic>Aortic Valve Stenosis - surgery</topic><topic>Australia - epidemiology</topic><topic>Blood clots</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain injury</topic><topic>Brain research</topic><topic>Cerebral infarction</topic><topic>Cerebral Infarction - diagnosis</topic><topic>Cerebral Infarction - epidemiology</topic><topic>Cerebral Infarction - etiology</topic><topic>Cerebrovascular system</topic><topic>Cortex</topic><topic>Embolic Protection Devices</topic><topic>Female</topic><topic>Heart</topic><topic>Hemispheric laterality</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Implantation</topic><topic>Infarction</topic><topic>Injuries</topic><topic>Intracranial Embolism - diagnostic imaging</topic><topic>Intracranial Embolism - etiology</topic><topic>Intraoperative Complications - epidemiology</topic><topic>Intraoperative Complications - etiology</topic><topic>Intraoperative Complications - prevention &amp; control</topic><topic>Ischemia</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Neuroimaging</topic><topic>Neuropathology</topic><topic>Neuroprotection</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Postoperative Complications - diagnosis</topic><topic>Postoperative Complications - epidemiology</topic><topic>Postoperative Complications - prevention &amp; control</topic><topic>Stroke</topic><topic>Substantia grisea</topic><topic>Surgery</topic><topic>Thorax</topic><topic>Transcatheter Aortic Valve Replacement - adverse effects</topic><topic>Transcatheter Aortic Valve Replacement - methods</topic><topic>Transplants &amp; implants</topic><topic>Veins &amp; arteries</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fanning, Jonathon P.</creatorcontrib><creatorcontrib>Wesley, Allan J.</creatorcontrib><creatorcontrib>Walters, Darren L.</creatorcontrib><creatorcontrib>Wong, Andrew A.</creatorcontrib><creatorcontrib>Barnett, Adrian G.</creatorcontrib><creatorcontrib>Strugnell, Wendy E.</creatorcontrib><creatorcontrib>Platts, David G.</creatorcontrib><creatorcontrib>Fraser, John F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American heart journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fanning, Jonathon P.</au><au>Wesley, Allan J.</au><au>Walters, Darren L.</au><au>Wong, Andrew A.</au><au>Barnett, Adrian G.</au><au>Strugnell, Wendy E.</au><au>Platts, David G.</au><au>Fraser, John F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation</atitle><jtitle>The American heart journal</jtitle><addtitle>Am Heart J</addtitle><date>2018-03</date><risdate>2018</risdate><volume>197</volume><spage>113</spage><epage>123</epage><pages>113-123</pages><issn>0002-8703</issn><eissn>1097-6744</eissn><abstract>Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)–defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena. Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure. Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere. The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29447771</pmid><doi>10.1016/j.ahj.2017.12.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-8703
ispartof The American heart journal, 2018-03, Vol.197, p.113-123
issn 0002-8703
1097-6744
language eng
recordid cdi_proquest_miscellaneous_2003037844
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Aged, 80 and over
Anesthesia
Aortic valve
Aortic Valve Stenosis - surgery
Australia - epidemiology
Blood clots
Brain
Brain - diagnostic imaging
Brain - pathology
Brain injury
Brain research
Cerebral infarction
Cerebral Infarction - diagnosis
Cerebral Infarction - epidemiology
Cerebral Infarction - etiology
Cerebrovascular system
Cortex
Embolic Protection Devices
Female
Heart
Hemispheric laterality
Hospitals
Humans
Implantation
Infarction
Injuries
Intracranial Embolism - diagnostic imaging
Intracranial Embolism - etiology
Intraoperative Complications - epidemiology
Intraoperative Complications - etiology
Intraoperative Complications - prevention & control
Ischemia
Lesions
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medical personnel
Neuroimaging
Neuropathology
Neuroprotection
NMR
Nuclear magnetic resonance
Patients
Performance evaluation
Postoperative Complications - diagnosis
Postoperative Complications - epidemiology
Postoperative Complications - prevention & control
Stroke
Substantia grisea
Surgery
Thorax
Transcatheter Aortic Valve Replacement - adverse effects
Transcatheter Aortic Valve Replacement - methods
Transplants & implants
Veins & arteries
Vertebrae
title Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographical%20distribution%20of%20perioperative%20cerebral%20infarction%20associated%20with%20transcatheter%20aortic%20valve%20implantation&rft.jtitle=The%20American%20heart%20journal&rft.au=Fanning,%20Jonathon%20P.&rft.date=2018-03&rft.volume=197&rft.spage=113&rft.epage=123&rft.pages=113-123&rft.issn=0002-8703&rft.eissn=1097-6744&rft_id=info:doi/10.1016/j.ahj.2017.12.008&rft_dat=%3Cproquest_cross%3E2007530927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007530927&rft_id=info:pmid/29447771&rft_els_id=S0002870317303940&rfr_iscdi=true