A spin–orbital-entangled quantum liquid on a honeycomb lattice
A quantum-liquid state of spin–orbital-entangled magnetic moments is observed in the 5 d -electron honeycomb iridate H 3 LiIr 2 O 6 , evidenced by the absence of magnetic ordering down to 0.05 kelvin. Honeycomb hosts quantum spin liquid When materials with interacting spins are cooled, magnetic stat...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-02, Vol.554 (7692), p.341-345 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 7692 |
container_start_page | 341 |
container_title | Nature (London) |
container_volume | 554 |
creator | Kitagawa, K. Takayama, T. Matsumoto, Y. Kato, A. Takano, R. Kishimoto, Y. Bette, S. Dinnebier, R. Jackeli, G. Takagi, H. |
description | A quantum-liquid state of spin–orbital-entangled magnetic moments is observed in the 5
d
-electron honeycomb iridate H
3
LiIr
2
O
6
, evidenced by the absence of magnetic ordering down to 0.05 kelvin.
Honeycomb hosts quantum spin liquid
When materials with interacting spins are cooled, magnetic states with long-range ordering usually emerge. However, quantum effects have been predicted to prevent long-range ordering all the way down to temperatures close to absolute zero in materials known as quantum spin liquids, where the term 'liquid' refers to the disordered state of the spins. The realization of such a state in a material with a honeycomb lattice, such as graphene, is expected to also reveal topological excitations. Hidenori Takagi and colleagues demonstrate a quantum-spin-liquid state in the 5
d
honeycomb iridate H
3
LiIrO
6
, which shows no magnetic ordering down to 0.05 kelvin. Signatures of unusual excitations suggest that this material is a topological quantum-spin-liquid candidate.
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene
1
, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model
2
. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking
3
. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion
2
. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 moments have been proposed
4
, including the 5
d
-electron systems α-Na
2
IrO
3
(ref.
5
) and α-Li
2
IrO
3
(ref.
6
) and the 4
d
-electron system α-RuCl
3
(ref.
7
). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures
8
,
9
,
10
, owing to non-Kitaev interactions
6
,
11
,
12
,
13
. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5
d
-electron honeycomb compound H
3
LiIr
2
O
6
. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 10 |
doi_str_mv | 10.1038/nature25482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2002481991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002481991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3091332ddbe570d6a5eb5f1d0d4c90efed15b462770aa151a63ab2131db7c1f53</originalsourceid><addsrcrecordid>eNptkLlOw0AQhlcIREKgokeWaJDAsKePDhRxSZFooLbW3nEwsneTPQo63oE35EnYKOEQoppiPv3_zIfQIcHnBLPiQksfLFDBC7qFxoTnWcqzIt9GY4xpkeKCZSO059wLxliQnO-iES05z1hBx-jyKnGLTn-8vRtbd172KWgv9bwHlSyD1D4MSd8tQ6cSoxOZPBsNr40Z6qSX3ncN7KOdVvYODjZzgp5urh-nd-ns4fZ-ejVLGya4TxkuCWNUqRpEjlUmBdSiJQor3pQYWlBE1DyjeY6lJILIjMmaEkZUnTekFWyCTta5C2uWAZyvhs410PdSgwmuovFZXpAy1kzQ8R_0xQSr43UriuHogJaROl1TjTXOWWirhe0GaV8rgquV2OqX2EgfbTJDPYD6Zr9MRuBsDbi40nOwP6X_5X0CXsiDlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003017429</pqid></control><display><type>article</type><title>A spin–orbital-entangled quantum liquid on a honeycomb lattice</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kitagawa, K. ; Takayama, T. ; Matsumoto, Y. ; Kato, A. ; Takano, R. ; Kishimoto, Y. ; Bette, S. ; Dinnebier, R. ; Jackeli, G. ; Takagi, H.</creator><creatorcontrib>Kitagawa, K. ; Takayama, T. ; Matsumoto, Y. ; Kato, A. ; Takano, R. ; Kishimoto, Y. ; Bette, S. ; Dinnebier, R. ; Jackeli, G. ; Takagi, H.</creatorcontrib><description>A quantum-liquid state of spin–orbital-entangled magnetic moments is observed in the 5
d
-electron honeycomb iridate H
3
LiIr
2
O
6
, evidenced by the absence of magnetic ordering down to 0.05 kelvin.
Honeycomb hosts quantum spin liquid
When materials with interacting spins are cooled, magnetic states with long-range ordering usually emerge. However, quantum effects have been predicted to prevent long-range ordering all the way down to temperatures close to absolute zero in materials known as quantum spin liquids, where the term 'liquid' refers to the disordered state of the spins. The realization of such a state in a material with a honeycomb lattice, such as graphene, is expected to also reveal topological excitations. Hidenori Takagi and colleagues demonstrate a quantum-spin-liquid state in the 5
d
honeycomb iridate H
3
LiIrO
6
, which shows no magnetic ordering down to 0.05 kelvin. Signatures of unusual excitations suggest that this material is a topological quantum-spin-liquid candidate.
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene
1
, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model
2
. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking
3
. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion
2
. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 moments have been proposed
4
, including the 5
d
-electron systems α-Na
2
IrO
3
(ref.
5
) and α-Li
2
IrO
3
(ref.
6
) and the 4
d
-electron system α-RuCl
3
(ref.
7
). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures
8
,
9
,
10
, owing to non-Kitaev interactions
6
,
11
,
12
,
13
. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5
d
-electron honeycomb compound H
3
LiIr
2
O
6
. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H
3
LiIr
2
O
6
is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin–orbit-coupled 5
d
-electron transition-metal oxide.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25482</identifier><identifier>PMID: 29446382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/301/119/995 ; 639/766/119/997 ; 639/766/119/999 ; Broken symmetry ; Condensed matter physics ; Defects ; Electron spin ; Electron transitions ; Electrons ; Fermions ; Heat ; Humanities and Social Sciences ; letter ; Liquids ; Low temperature ; Magnetic induction ; Magnets ; Materials science ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Quantum theory ; Ruthenium trichloride ; Science ; Specific heat ; Spin liquid ; Temperature ; Transition metal oxides</subject><ispartof>Nature (London), 2018-02, Vol.554 (7692), p.341-345</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>Copyright Nature Publishing Group Feb 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3091332ddbe570d6a5eb5f1d0d4c90efed15b462770aa151a63ab2131db7c1f53</citedby><cites>FETCH-LOGICAL-c354t-3091332ddbe570d6a5eb5f1d0d4c90efed15b462770aa151a63ab2131db7c1f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25482$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25482$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29446382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitagawa, K.</creatorcontrib><creatorcontrib>Takayama, T.</creatorcontrib><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Kato, A.</creatorcontrib><creatorcontrib>Takano, R.</creatorcontrib><creatorcontrib>Kishimoto, Y.</creatorcontrib><creatorcontrib>Bette, S.</creatorcontrib><creatorcontrib>Dinnebier, R.</creatorcontrib><creatorcontrib>Jackeli, G.</creatorcontrib><creatorcontrib>Takagi, H.</creatorcontrib><title>A spin–orbital-entangled quantum liquid on a honeycomb lattice</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A quantum-liquid state of spin–orbital-entangled magnetic moments is observed in the 5
d
-electron honeycomb iridate H
3
LiIr
2
O
6
, evidenced by the absence of magnetic ordering down to 0.05 kelvin.
Honeycomb hosts quantum spin liquid
When materials with interacting spins are cooled, magnetic states with long-range ordering usually emerge. However, quantum effects have been predicted to prevent long-range ordering all the way down to temperatures close to absolute zero in materials known as quantum spin liquids, where the term 'liquid' refers to the disordered state of the spins. The realization of such a state in a material with a honeycomb lattice, such as graphene, is expected to also reveal topological excitations. Hidenori Takagi and colleagues demonstrate a quantum-spin-liquid state in the 5
d
honeycomb iridate H
3
LiIrO
6
, which shows no magnetic ordering down to 0.05 kelvin. Signatures of unusual excitations suggest that this material is a topological quantum-spin-liquid candidate.
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene
1
, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model
2
. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking
3
. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion
2
. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 moments have been proposed
4
, including the 5
d
-electron systems α-Na
2
IrO
3
(ref.
5
) and α-Li
2
IrO
3
(ref.
6
) and the 4
d
-electron system α-RuCl
3
(ref.
7
). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures
8
,
9
,
10
, owing to non-Kitaev interactions
6
,
11
,
12
,
13
. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5
d
-electron honeycomb compound H
3
LiIr
2
O
6
. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H
3
LiIr
2
O
6
is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin–orbit-coupled 5
d
-electron transition-metal oxide.</description><subject>140/131</subject><subject>639/301/119/995</subject><subject>639/766/119/997</subject><subject>639/766/119/999</subject><subject>Broken symmetry</subject><subject>Condensed matter physics</subject><subject>Defects</subject><subject>Electron spin</subject><subject>Electron transitions</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Heat</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Liquids</subject><subject>Low temperature</subject><subject>Magnetic induction</subject><subject>Magnets</subject><subject>Materials science</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Quantum theory</subject><subject>Ruthenium trichloride</subject><subject>Science</subject><subject>Specific heat</subject><subject>Spin liquid</subject><subject>Temperature</subject><subject>Transition metal oxides</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkLlOw0AQhlcIREKgokeWaJDAsKePDhRxSZFooLbW3nEwsneTPQo63oE35EnYKOEQoppiPv3_zIfQIcHnBLPiQksfLFDBC7qFxoTnWcqzIt9GY4xpkeKCZSO059wLxliQnO-iES05z1hBx-jyKnGLTn-8vRtbd172KWgv9bwHlSyD1D4MSd8tQ6cSoxOZPBsNr40Z6qSX3ncN7KOdVvYODjZzgp5urh-nd-ns4fZ-ejVLGya4TxkuCWNUqRpEjlUmBdSiJQor3pQYWlBE1DyjeY6lJILIjMmaEkZUnTekFWyCTta5C2uWAZyvhs410PdSgwmuovFZXpAy1kzQ8R_0xQSr43UriuHogJaROl1TjTXOWWirhe0GaV8rgquV2OqX2EgfbTJDPYD6Zr9MRuBsDbi40nOwP6X_5X0CXsiDlg</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Kitagawa, K.</creator><creator>Takayama, T.</creator><creator>Matsumoto, Y.</creator><creator>Kato, A.</creator><creator>Takano, R.</creator><creator>Kishimoto, Y.</creator><creator>Bette, S.</creator><creator>Dinnebier, R.</creator><creator>Jackeli, G.</creator><creator>Takagi, H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180215</creationdate><title>A spin–orbital-entangled quantum liquid on a honeycomb lattice</title><author>Kitagawa, K. ; Takayama, T. ; Matsumoto, Y. ; Kato, A. ; Takano, R. ; Kishimoto, Y. ; Bette, S. ; Dinnebier, R. ; Jackeli, G. ; Takagi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3091332ddbe570d6a5eb5f1d0d4c90efed15b462770aa151a63ab2131db7c1f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/131</topic><topic>639/301/119/995</topic><topic>639/766/119/997</topic><topic>639/766/119/999</topic><topic>Broken symmetry</topic><topic>Condensed matter physics</topic><topic>Defects</topic><topic>Electron spin</topic><topic>Electron transitions</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Heat</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Liquids</topic><topic>Low temperature</topic><topic>Magnetic induction</topic><topic>Magnets</topic><topic>Materials science</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Quantum theory</topic><topic>Ruthenium trichloride</topic><topic>Science</topic><topic>Specific heat</topic><topic>Spin liquid</topic><topic>Temperature</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitagawa, K.</creatorcontrib><creatorcontrib>Takayama, T.</creatorcontrib><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Kato, A.</creatorcontrib><creatorcontrib>Takano, R.</creatorcontrib><creatorcontrib>Kishimoto, Y.</creatorcontrib><creatorcontrib>Bette, S.</creatorcontrib><creatorcontrib>Dinnebier, R.</creatorcontrib><creatorcontrib>Jackeli, G.</creatorcontrib><creatorcontrib>Takagi, H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitagawa, K.</au><au>Takayama, T.</au><au>Matsumoto, Y.</au><au>Kato, A.</au><au>Takano, R.</au><au>Kishimoto, Y.</au><au>Bette, S.</au><au>Dinnebier, R.</au><au>Jackeli, G.</au><au>Takagi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spin–orbital-entangled quantum liquid on a honeycomb lattice</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>554</volume><issue>7692</issue><spage>341</spage><epage>345</epage><pages>341-345</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A quantum-liquid state of spin–orbital-entangled magnetic moments is observed in the 5
d
-electron honeycomb iridate H
3
LiIr
2
O
6
, evidenced by the absence of magnetic ordering down to 0.05 kelvin.
Honeycomb hosts quantum spin liquid
When materials with interacting spins are cooled, magnetic states with long-range ordering usually emerge. However, quantum effects have been predicted to prevent long-range ordering all the way down to temperatures close to absolute zero in materials known as quantum spin liquids, where the term 'liquid' refers to the disordered state of the spins. The realization of such a state in a material with a honeycomb lattice, such as graphene, is expected to also reveal topological excitations. Hidenori Takagi and colleagues demonstrate a quantum-spin-liquid state in the 5
d
honeycomb iridate H
3
LiIrO
6
, which shows no magnetic ordering down to 0.05 kelvin. Signatures of unusual excitations suggest that this material is a topological quantum-spin-liquid candidate.
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene
1
, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model
2
. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking
3
. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion
2
. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 moments have been proposed
4
, including the 5
d
-electron systems α-Na
2
IrO
3
(ref.
5
) and α-Li
2
IrO
3
(ref.
6
) and the 4
d
-electron system α-RuCl
3
(ref.
7
). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures
8
,
9
,
10
, owing to non-Kitaev interactions
6
,
11
,
12
,
13
. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5
d
-electron honeycomb compound H
3
LiIr
2
O
6
. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H
3
LiIr
2
O
6
is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin–orbit-coupled 5
d
-electron transition-metal oxide.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29446382</pmid><doi>10.1038/nature25482</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-02, Vol.554 (7692), p.341-345 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2002481991 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/131 639/301/119/995 639/766/119/997 639/766/119/999 Broken symmetry Condensed matter physics Defects Electron spin Electron transitions Electrons Fermions Heat Humanities and Social Sciences letter Liquids Low temperature Magnetic induction Magnets Materials science multidisciplinary NMR Nuclear magnetic resonance Quantum theory Ruthenium trichloride Science Specific heat Spin liquid Temperature Transition metal oxides |
title | A spin–orbital-entangled quantum liquid on a honeycomb lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spin%E2%80%93orbital-entangled%20quantum%20liquid%20on%20a%20honeycomb%20lattice&rft.jtitle=Nature%20(London)&rft.au=Kitagawa,%20K.&rft.date=2018-02-15&rft.volume=554&rft.issue=7692&rft.spage=341&rft.epage=345&rft.pages=341-345&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25482&rft_dat=%3Cproquest_cross%3E2002481991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003017429&rft_id=info:pmid/29446382&rfr_iscdi=true |