Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants

In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild‐type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2018-11, Vol.164 (3), p.251-267
Hauptverfasser: Calderón, Aingeru, Sánchez‐Guerrero, Antonio, Ortiz‐Espín, Ana, Martínez‐Alcalá, Isabel, Camejo, Daymi, Jiménez, Ana, Sevilla, Francisca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 3
container_start_page 251
container_title Physiologia plantarum
container_volume 164
creator Calderón, Aingeru
Sánchez‐Guerrero, Antonio
Ortiz‐Espín, Ana
Martínez‐Alcalá, Isabel
Camejo, Daymi
Jiménez, Ana
Sevilla, Francisca
description In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild‐type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
doi_str_mv 10.1111/ppl.12708
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2002481609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117319410</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2798-24e6b64ecc3c52500d23bb3ef676c11ee00ac5f176775f17f9d7526dfbb5062b3</originalsourceid><addsrcrecordid>eNpdkUtr3TAQhUVpaG4ei_6BIugmGyczki1dL0NoHnAhWbRroZe5Sm3JsWzSS_98lJu0i8zmDJxvhmEOIV8RzrHUxTj258gkrD-RFfK2rTg09WeyAuBYtRzlITnK-REAhUD2hRyytq5F3YgV-bvR9jdNHR3CnOw2RTcF3dN5G9LkXfoTIk1IQ6Y2DaOPWc_eUbOjOs6huK7o3krRxznTJTo_0az7EMO8o2X6ctImuDTmsmPeFkNHTce-zOUTctDpPvvTdz0mv65__Ly6rTb3N3dXl5tqZLJdV6z2wojaW8ttwxoAx7gx3HdCCovoPYC2TYdSSPkqXetkw4TrjGlAMMOPydnb3nFKT4vPsxpCtr4vR_i0ZMUAWL1GAW1Bv39AH9MyxXKdYoiSY1sjFOrbO7WYwTs1TmHQ0079e2sBLt6A59D73X8fQb3mpUpeap-XenjY7Bv-AiERiSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117319410</pqid></control><display><type>article</type><title>Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants</title><source>Wiley Online Library All Journals</source><creator>Calderón, Aingeru ; Sánchez‐Guerrero, Antonio ; Ortiz‐Espín, Ana ; Martínez‐Alcalá, Isabel ; Camejo, Daymi ; Jiménez, Ana ; Sevilla, Francisca</creator><creatorcontrib>Calderón, Aingeru ; Sánchez‐Guerrero, Antonio ; Ortiz‐Espín, Ana ; Martínez‐Alcalá, Isabel ; Camejo, Daymi ; Jiménez, Ana ; Sevilla, Francisca</creatorcontrib><description>In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild‐type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12708</identifier><identifier>PMID: 29446456</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agronomy ; Antioxidants ; Carbonyls ; Catalase ; Changing environments ; Enzymatic activity ; Hydrogen peroxide ; Isoenzymes ; Lipid peroxidation ; Lipids ; Metabolism ; Mitochondria ; Mutants ; Nitric oxide ; Peroxidation ; Phenotypes ; Proteins ; Salinity ; Salinity effects ; Sodium chloride ; Stomata ; Superoxide dismutase ; Thioredoxin ; Water loss</subject><ispartof>Physiologia plantarum, 2018-11, Vol.164 (3), p.251-267</ispartof><rights>2018 Scandinavian Plant Physiology Society</rights><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2986-1889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12708$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12708$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29446456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calderón, Aingeru</creatorcontrib><creatorcontrib>Sánchez‐Guerrero, Antonio</creatorcontrib><creatorcontrib>Ortiz‐Espín, Ana</creatorcontrib><creatorcontrib>Martínez‐Alcalá, Isabel</creatorcontrib><creatorcontrib>Camejo, Daymi</creatorcontrib><creatorcontrib>Jiménez, Ana</creatorcontrib><creatorcontrib>Sevilla, Francisca</creatorcontrib><title>Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild‐type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.</description><subject>Agronomy</subject><subject>Antioxidants</subject><subject>Carbonyls</subject><subject>Catalase</subject><subject>Changing environments</subject><subject>Enzymatic activity</subject><subject>Hydrogen peroxide</subject><subject>Isoenzymes</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mutants</subject><subject>Nitric oxide</subject><subject>Peroxidation</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium chloride</subject><subject>Stomata</subject><subject>Superoxide dismutase</subject><subject>Thioredoxin</subject><subject>Water loss</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3TAQhUVpaG4ei_6BIugmGyczki1dL0NoHnAhWbRroZe5Sm3JsWzSS_98lJu0i8zmDJxvhmEOIV8RzrHUxTj258gkrD-RFfK2rTg09WeyAuBYtRzlITnK-REAhUD2hRyytq5F3YgV-bvR9jdNHR3CnOw2RTcF3dN5G9LkXfoTIk1IQ6Y2DaOPWc_eUbOjOs6huK7o3krRxznTJTo_0az7EMO8o2X6ctImuDTmsmPeFkNHTce-zOUTctDpPvvTdz0mv65__Ly6rTb3N3dXl5tqZLJdV6z2wojaW8ttwxoAx7gx3HdCCovoPYC2TYdSSPkqXetkw4TrjGlAMMOPydnb3nFKT4vPsxpCtr4vR_i0ZMUAWL1GAW1Bv39AH9MyxXKdYoiSY1sjFOrbO7WYwTs1TmHQ0079e2sBLt6A59D73X8fQb3mpUpeap-XenjY7Bv-AiERiSU</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Calderón, Aingeru</creator><creator>Sánchez‐Guerrero, Antonio</creator><creator>Ortiz‐Espín, Ana</creator><creator>Martínez‐Alcalá, Isabel</creator><creator>Camejo, Daymi</creator><creator>Jiménez, Ana</creator><creator>Sevilla, Francisca</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2986-1889</orcidid></search><sort><creationdate>201811</creationdate><title>Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants</title><author>Calderón, Aingeru ; Sánchez‐Guerrero, Antonio ; Ortiz‐Espín, Ana ; Martínez‐Alcalá, Isabel ; Camejo, Daymi ; Jiménez, Ana ; Sevilla, Francisca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2798-24e6b64ecc3c52500d23bb3ef676c11ee00ac5f176775f17f9d7526dfbb5062b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agronomy</topic><topic>Antioxidants</topic><topic>Carbonyls</topic><topic>Catalase</topic><topic>Changing environments</topic><topic>Enzymatic activity</topic><topic>Hydrogen peroxide</topic><topic>Isoenzymes</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mutants</topic><topic>Nitric oxide</topic><topic>Peroxidation</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium chloride</topic><topic>Stomata</topic><topic>Superoxide dismutase</topic><topic>Thioredoxin</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderón, Aingeru</creatorcontrib><creatorcontrib>Sánchez‐Guerrero, Antonio</creatorcontrib><creatorcontrib>Ortiz‐Espín, Ana</creatorcontrib><creatorcontrib>Martínez‐Alcalá, Isabel</creatorcontrib><creatorcontrib>Camejo, Daymi</creatorcontrib><creatorcontrib>Jiménez, Ana</creatorcontrib><creatorcontrib>Sevilla, Francisca</creatorcontrib><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calderón, Aingeru</au><au>Sánchez‐Guerrero, Antonio</au><au>Ortiz‐Espín, Ana</au><au>Martínez‐Alcalá, Isabel</au><au>Camejo, Daymi</au><au>Jiménez, Ana</au><au>Sevilla, Francisca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2018-11</date><risdate>2018</risdate><volume>164</volume><issue>3</issue><spage>251</spage><epage>267</epage><pages>251-267</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild‐type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>29446456</pmid><doi>10.1111/ppl.12708</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2986-1889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2018-11, Vol.164 (3), p.251-267
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_2002481609
source Wiley Online Library All Journals
subjects Agronomy
Antioxidants
Carbonyls
Catalase
Changing environments
Enzymatic activity
Hydrogen peroxide
Isoenzymes
Lipid peroxidation
Lipids
Metabolism
Mitochondria
Mutants
Nitric oxide
Peroxidation
Phenotypes
Proteins
Salinity
Salinity effects
Sodium chloride
Stomata
Superoxide dismutase
Thioredoxin
Water loss
title Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20mitochondrial%20thioredoxin%20o1%20is%20compensated%20by%20antioxidant%20components%20under%20salinity%20in%20Arabidopsis%20thaliana%20plants&rft.jtitle=Physiologia%20plantarum&rft.au=Calder%C3%B3n,%20Aingeru&rft.date=2018-11&rft.volume=164&rft.issue=3&rft.spage=251&rft.epage=267&rft.pages=251-267&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12708&rft_dat=%3Cproquest_pubme%3E2117319410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117319410&rft_id=info:pmid/29446456&rfr_iscdi=true