Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cystei...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2018-03, Vol.475 (6), p.1091-1105 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1105 |
---|---|
container_issue | 6 |
container_start_page | 1091 |
container_title | Biochemical journal |
container_volume | 475 |
creator | Mihara, Shoko Wakao, Hitomi Yoshida, Keisuke Higo, Akiyoshi Sugiura, Kazunori Tsuchiya, Akihiro Nomata, Jiro Wakabayashi, Ken-Ichi Hisabori, Toru |
description | Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO
from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium
sp. PCC 7120 (
7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though
G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from
7120 and its activator protein OpcA, we found that
-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys
and Cys
of OpcA are responsible for the redox regulation property of this protein. Moreover,
analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day. |
doi_str_mv | 10.1042/BCJ20170869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2002218710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002218710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</originalsourceid><addsrcrecordid>eNpN0DtPwzAUBWALgaAUJnbkEQmlXDtO7IwlvFWpDN2jG8dJjVKn2AmiI_-clpeY7vLdI51DyBmDCQPBr67zJw5MgkqzPTJiQkKkJFf7ZAQ8FVEKnB2R4xBeAJgAAYfkiGdCQMzkiHwslrbzpureraPeNEOLvQn0Pn2-eaCoe_tm-w0tN1Qv0TXWNfQL09B_ua6m87We0u1zvzTU2d53jXFRbd93Vm_QdeU2xng7rOjUYYnGIQ3rCX3OcyoZhxNyUGMbzOnPHZPF3e0if4hm8_vHfDqLdJxlfVRXsjSqQl0pTDBDJlVZ80rFpU65AgkiyTjGaMS2V5JUGfI046lkJcSQQDwmF9-xa9-9Dib0xcoGbdoWnemGUHAAzpmSbEcvv6n2XQje1MXa2xX6TcGg2E1e_Jt8q89_godyZao_-7tx_AlntnrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002218710</pqid></control><display><type>article</type><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</creator><creatorcontrib>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</creatorcontrib><description>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO
from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium
sp. PCC 7120 (
7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though
G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from
7120 and its activator protein OpcA, we found that
-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys
and Cys
of OpcA are responsible for the redox regulation property of this protein. Moreover,
analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20170869</identifier><identifier>PMID: 29440317</identifier><language>eng</language><publisher>England</publisher><subject>Anabaena - genetics ; Anabaena - growth & development ; Anabaena - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Glucosephosphate Dehydrogenase - metabolism ; Nitrogen Fixation - genetics ; Organisms, Genetically Modified ; Oxidation-Reduction ; Photosynthesis - genetics ; Thioredoxins - genetics ; Thioredoxins - physiology</subject><ispartof>Biochemical journal, 2018-03, Vol.475 (6), p.1091-1105</ispartof><rights>2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</citedby><cites>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29440317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihara, Shoko</creatorcontrib><creatorcontrib>Wakao, Hitomi</creatorcontrib><creatorcontrib>Yoshida, Keisuke</creatorcontrib><creatorcontrib>Higo, Akiyoshi</creatorcontrib><creatorcontrib>Sugiura, Kazunori</creatorcontrib><creatorcontrib>Tsuchiya, Akihiro</creatorcontrib><creatorcontrib>Nomata, Jiro</creatorcontrib><creatorcontrib>Wakabayashi, Ken-Ichi</creatorcontrib><creatorcontrib>Hisabori, Toru</creatorcontrib><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO
from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium
sp. PCC 7120 (
7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though
G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from
7120 and its activator protein OpcA, we found that
-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys
and Cys
of OpcA are responsible for the redox regulation property of this protein. Moreover,
analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</description><subject>Anabaena - genetics</subject><subject>Anabaena - growth & development</subject><subject>Anabaena - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Nitrogen Fixation - genetics</subject><subject>Organisms, Genetically Modified</subject><subject>Oxidation-Reduction</subject><subject>Photosynthesis - genetics</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - physiology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0DtPwzAUBWALgaAUJnbkEQmlXDtO7IwlvFWpDN2jG8dJjVKn2AmiI_-clpeY7vLdI51DyBmDCQPBr67zJw5MgkqzPTJiQkKkJFf7ZAQ8FVEKnB2R4xBeAJgAAYfkiGdCQMzkiHwslrbzpureraPeNEOLvQn0Pn2-eaCoe_tm-w0tN1Qv0TXWNfQL09B_ua6m87We0u1zvzTU2d53jXFRbd93Vm_QdeU2xng7rOjUYYnGIQ3rCX3OcyoZhxNyUGMbzOnPHZPF3e0if4hm8_vHfDqLdJxlfVRXsjSqQl0pTDBDJlVZ80rFpU65AgkiyTjGaMS2V5JUGfI046lkJcSQQDwmF9-xa9-9Dib0xcoGbdoWnemGUHAAzpmSbEcvv6n2XQje1MXa2xX6TcGg2E1e_Jt8q89_godyZao_-7tx_AlntnrB</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Mihara, Shoko</creator><creator>Wakao, Hitomi</creator><creator>Yoshida, Keisuke</creator><creator>Higo, Akiyoshi</creator><creator>Sugiura, Kazunori</creator><creator>Tsuchiya, Akihiro</creator><creator>Nomata, Jiro</creator><creator>Wakabayashi, Ken-Ichi</creator><creator>Hisabori, Toru</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180330</creationdate><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><author>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anabaena - genetics</topic><topic>Anabaena - growth & development</topic><topic>Anabaena - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Nitrogen Fixation - genetics</topic><topic>Organisms, Genetically Modified</topic><topic>Oxidation-Reduction</topic><topic>Photosynthesis - genetics</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihara, Shoko</creatorcontrib><creatorcontrib>Wakao, Hitomi</creatorcontrib><creatorcontrib>Yoshida, Keisuke</creatorcontrib><creatorcontrib>Higo, Akiyoshi</creatorcontrib><creatorcontrib>Sugiura, Kazunori</creatorcontrib><creatorcontrib>Tsuchiya, Akihiro</creatorcontrib><creatorcontrib>Nomata, Jiro</creatorcontrib><creatorcontrib>Wakabayashi, Ken-Ichi</creatorcontrib><creatorcontrib>Hisabori, Toru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihara, Shoko</au><au>Wakao, Hitomi</au><au>Yoshida, Keisuke</au><au>Higo, Akiyoshi</au><au>Sugiura, Kazunori</au><au>Tsuchiya, Akihiro</au><au>Nomata, Jiro</au><au>Wakabayashi, Ken-Ichi</au><au>Hisabori, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>475</volume><issue>6</issue><spage>1091</spage><epage>1105</epage><pages>1091-1105</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO
from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium
sp. PCC 7120 (
7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though
G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from
7120 and its activator protein OpcA, we found that
-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys
and Cys
of OpcA are responsible for the redox regulation property of this protein. Moreover,
analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</abstract><cop>England</cop><pmid>29440317</pmid><doi>10.1042/BCJ20170869</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2018-03, Vol.475 (6), p.1091-1105 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_proquest_miscellaneous_2002218710 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Anabaena - genetics Anabaena - growth & development Anabaena - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Gene Expression Regulation, Bacterial Glucosephosphate Dehydrogenase - metabolism Nitrogen Fixation - genetics Organisms, Genetically Modified Oxidation-Reduction Photosynthesis - genetics Thioredoxins - genetics Thioredoxins - physiology |
title | Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxin%20regulates%20G6PDH%20activity%20by%20changing%20redox%20states%20of%20OpcA%20in%20the%20nitrogen-fixing%20cyanobacterium%20Anabaena%20sp.%20PCC%207120&rft.jtitle=Biochemical%20journal&rft.au=Mihara,%20Shoko&rft.date=2018-03-30&rft.volume=475&rft.issue=6&rft.spage=1091&rft.epage=1105&rft.pages=1091-1105&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20170869&rft_dat=%3Cproquest_cross%3E2002218710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002218710&rft_id=info:pmid/29440317&rfr_iscdi=true |