Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cystei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2018-03, Vol.475 (6), p.1091-1105
Hauptverfasser: Mihara, Shoko, Wakao, Hitomi, Yoshida, Keisuke, Higo, Akiyoshi, Sugiura, Kazunori, Tsuchiya, Akihiro, Nomata, Jiro, Wakabayashi, Ken-Ichi, Hisabori, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 6
container_start_page 1091
container_title Biochemical journal
container_volume 475
creator Mihara, Shoko
Wakao, Hitomi
Yoshida, Keisuke
Higo, Akiyoshi
Sugiura, Kazunori
Tsuchiya, Akihiro
Nomata, Jiro
Wakabayashi, Ken-Ichi
Hisabori, Toru
description Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium sp. PCC 7120 ( 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from 7120 and its activator protein OpcA, we found that -type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys and Cys of OpcA are responsible for the redox regulation property of this protein. Moreover, analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.
doi_str_mv 10.1042/BCJ20170869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2002218710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002218710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</originalsourceid><addsrcrecordid>eNpN0DtPwzAUBWALgaAUJnbkEQmlXDtO7IwlvFWpDN2jG8dJjVKn2AmiI_-clpeY7vLdI51DyBmDCQPBr67zJw5MgkqzPTJiQkKkJFf7ZAQ8FVEKnB2R4xBeAJgAAYfkiGdCQMzkiHwslrbzpureraPeNEOLvQn0Pn2-eaCoe_tm-w0tN1Qv0TXWNfQL09B_ua6m87We0u1zvzTU2d53jXFRbd93Vm_QdeU2xng7rOjUYYnGIQ3rCX3OcyoZhxNyUGMbzOnPHZPF3e0if4hm8_vHfDqLdJxlfVRXsjSqQl0pTDBDJlVZ80rFpU65AgkiyTjGaMS2V5JUGfI046lkJcSQQDwmF9-xa9-9Dib0xcoGbdoWnemGUHAAzpmSbEcvv6n2XQje1MXa2xX6TcGg2E1e_Jt8q89_godyZao_-7tx_AlntnrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002218710</pqid></control><display><type>article</type><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</creator><creatorcontrib>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</creatorcontrib><description>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium sp. PCC 7120 ( 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from 7120 and its activator protein OpcA, we found that -type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys and Cys of OpcA are responsible for the redox regulation property of this protein. Moreover, analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20170869</identifier><identifier>PMID: 29440317</identifier><language>eng</language><publisher>England</publisher><subject>Anabaena - genetics ; Anabaena - growth &amp; development ; Anabaena - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Glucosephosphate Dehydrogenase - metabolism ; Nitrogen Fixation - genetics ; Organisms, Genetically Modified ; Oxidation-Reduction ; Photosynthesis - genetics ; Thioredoxins - genetics ; Thioredoxins - physiology</subject><ispartof>Biochemical journal, 2018-03, Vol.475 (6), p.1091-1105</ispartof><rights>2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</citedby><cites>FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29440317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihara, Shoko</creatorcontrib><creatorcontrib>Wakao, Hitomi</creatorcontrib><creatorcontrib>Yoshida, Keisuke</creatorcontrib><creatorcontrib>Higo, Akiyoshi</creatorcontrib><creatorcontrib>Sugiura, Kazunori</creatorcontrib><creatorcontrib>Tsuchiya, Akihiro</creatorcontrib><creatorcontrib>Nomata, Jiro</creatorcontrib><creatorcontrib>Wakabayashi, Ken-Ichi</creatorcontrib><creatorcontrib>Hisabori, Toru</creatorcontrib><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium sp. PCC 7120 ( 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from 7120 and its activator protein OpcA, we found that -type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys and Cys of OpcA are responsible for the redox regulation property of this protein. Moreover, analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</description><subject>Anabaena - genetics</subject><subject>Anabaena - growth &amp; development</subject><subject>Anabaena - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Nitrogen Fixation - genetics</subject><subject>Organisms, Genetically Modified</subject><subject>Oxidation-Reduction</subject><subject>Photosynthesis - genetics</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - physiology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0DtPwzAUBWALgaAUJnbkEQmlXDtO7IwlvFWpDN2jG8dJjVKn2AmiI_-clpeY7vLdI51DyBmDCQPBr67zJw5MgkqzPTJiQkKkJFf7ZAQ8FVEKnB2R4xBeAJgAAYfkiGdCQMzkiHwslrbzpureraPeNEOLvQn0Pn2-eaCoe_tm-w0tN1Qv0TXWNfQL09B_ua6m87We0u1zvzTU2d53jXFRbd93Vm_QdeU2xng7rOjUYYnGIQ3rCX3OcyoZhxNyUGMbzOnPHZPF3e0if4hm8_vHfDqLdJxlfVRXsjSqQl0pTDBDJlVZ80rFpU65AgkiyTjGaMS2V5JUGfI046lkJcSQQDwmF9-xa9-9Dib0xcoGbdoWnemGUHAAzpmSbEcvv6n2XQje1MXa2xX6TcGg2E1e_Jt8q89_godyZao_-7tx_AlntnrB</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Mihara, Shoko</creator><creator>Wakao, Hitomi</creator><creator>Yoshida, Keisuke</creator><creator>Higo, Akiyoshi</creator><creator>Sugiura, Kazunori</creator><creator>Tsuchiya, Akihiro</creator><creator>Nomata, Jiro</creator><creator>Wakabayashi, Ken-Ichi</creator><creator>Hisabori, Toru</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180330</creationdate><title>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</title><author>Mihara, Shoko ; Wakao, Hitomi ; Yoshida, Keisuke ; Higo, Akiyoshi ; Sugiura, Kazunori ; Tsuchiya, Akihiro ; Nomata, Jiro ; Wakabayashi, Ken-Ichi ; Hisabori, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd7be8dacd8a5a9a178bf2d83bc6280704592a3ae431755d9a2692671b030503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anabaena - genetics</topic><topic>Anabaena - growth &amp; development</topic><topic>Anabaena - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Nitrogen Fixation - genetics</topic><topic>Organisms, Genetically Modified</topic><topic>Oxidation-Reduction</topic><topic>Photosynthesis - genetics</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihara, Shoko</creatorcontrib><creatorcontrib>Wakao, Hitomi</creatorcontrib><creatorcontrib>Yoshida, Keisuke</creatorcontrib><creatorcontrib>Higo, Akiyoshi</creatorcontrib><creatorcontrib>Sugiura, Kazunori</creatorcontrib><creatorcontrib>Tsuchiya, Akihiro</creatorcontrib><creatorcontrib>Nomata, Jiro</creatorcontrib><creatorcontrib>Wakabayashi, Ken-Ichi</creatorcontrib><creatorcontrib>Hisabori, Toru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihara, Shoko</au><au>Wakao, Hitomi</au><au>Yoshida, Keisuke</au><au>Higo, Akiyoshi</au><au>Sugiura, Kazunori</au><au>Tsuchiya, Akihiro</au><au>Nomata, Jiro</au><au>Wakabayashi, Ken-Ichi</au><au>Hisabori, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>475</volume><issue>6</issue><spage>1091</spage><epage>1105</epage><pages>1091-1105</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium sp. PCC 7120 ( 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from 7120 and its activator protein OpcA, we found that -type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys and Cys of OpcA are responsible for the redox regulation property of this protein. Moreover, analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.</abstract><cop>England</cop><pmid>29440317</pmid><doi>10.1042/BCJ20170869</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2018-03, Vol.475 (6), p.1091-1105
issn 0264-6021
1470-8728
language eng
recordid cdi_proquest_miscellaneous_2002218710
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Anabaena - genetics
Anabaena - growth & development
Anabaena - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Gene Expression Regulation, Bacterial
Glucosephosphate Dehydrogenase - metabolism
Nitrogen Fixation - genetics
Organisms, Genetically Modified
Oxidation-Reduction
Photosynthesis - genetics
Thioredoxins - genetics
Thioredoxins - physiology
title Thioredoxin regulates G6PDH activity by changing redox states of OpcA in the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxin%20regulates%20G6PDH%20activity%20by%20changing%20redox%20states%20of%20OpcA%20in%20the%20nitrogen-fixing%20cyanobacterium%20Anabaena%20sp.%20PCC%207120&rft.jtitle=Biochemical%20journal&rft.au=Mihara,%20Shoko&rft.date=2018-03-30&rft.volume=475&rft.issue=6&rft.spage=1091&rft.epage=1105&rft.pages=1091-1105&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20170869&rft_dat=%3Cproquest_cross%3E2002218710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002218710&rft_id=info:pmid/29440317&rfr_iscdi=true