Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase inst...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-03, Vol.30 (13), p.e1706275-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e1706275 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Kim, Junghwan Saidaminov, Makhsud I. Tan, Hairen Zhao, Yicheng Kim, Younghoon Choi, Jongmin Jo, Jea Woong Fan, James Quintero‐Bermudez, Rafael Yang, Zhenyu Quan, Li Na Wei, Mingyang Voznyy, Oleksandr Sargent, Edward H. |
description | Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.
The highly polar solvent additive, formamide, enables phase‐selective crystallization in wide‐bandgap (WBG) perovskites. By suppressing the formation of non‐perovskite phases, the WBG perovskites (Eg ≈ 1.75 eV) exhibit excellent light‐induced phase, thermal, and air stability, as well as device performance with a high Voc of 1.23 V and reduced hysteresis, with a power conversion efficiency (PCE) of 17.8%. |
doi_str_mv | 10.1002/adma.201706275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2002217048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002217048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-fc8821735b39b937a563f0a1e6a9130be8ffbac9105f3c6ec0418778ad1de5d63</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouq5ePUrBi5euk7ZJm-O6foKi-IHHkiZTjfZjbVqlnvwJ_kZ_iVl2VfDiaWDyzJNhXkK2KIwoQLAndSlHAdAYeBCzJTKgLKB-BIItkwGIkPmCR8kaWbf2EQAEB75K1gIRRZRTNiAP49Jo_Hz_mMhWFv0bau_yQdpZ5xoLVK15QW_S9Na9FuZNtqauvCvUnULrHWDuCFcqa9reM5V3N5fty0rfy6l3iU39Yp9Mi3aDrOSysLi5qENye3R4Mznxzy6OTyfjM19FFJifqyQJaByyLBSZCGPJeJiDpMiloCFkmOR5JpVwbB4qjgoimsRxIjXVyDQPh2R37p029XOHtk1LYxUWhayw7mwauKu5DyBKHLrzB32su6Zy2zmKijgKYjETjuaUamprG8zTaWNK2fQphXSWQTrLIP3JwA1sL7RdVqL-wb-P7gAxB15Ngf0_unR8cD7-lX8BMMeWHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742796</pqid></control><display><type>article</type><title>Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites</title><source>Access via Wiley Online Library</source><creator>Kim, Junghwan ; Saidaminov, Makhsud I. ; Tan, Hairen ; Zhao, Yicheng ; Kim, Younghoon ; Choi, Jongmin ; Jo, Jea Woong ; Fan, James ; Quintero‐Bermudez, Rafael ; Yang, Zhenyu ; Quan, Li Na ; Wei, Mingyang ; Voznyy, Oleksandr ; Sargent, Edward H.</creator><creatorcontrib>Kim, Junghwan ; Saidaminov, Makhsud I. ; Tan, Hairen ; Zhao, Yicheng ; Kim, Younghoon ; Choi, Jongmin ; Jo, Jea Woong ; Fan, James ; Quintero‐Bermudez, Rafael ; Yang, Zhenyu ; Quan, Li Na ; Wei, Mingyang ; Voznyy, Oleksandr ; Sargent, Edward H.</creatorcontrib><description>Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.
The highly polar solvent additive, formamide, enables phase‐selective crystallization in wide‐bandgap (WBG) perovskites. By suppressing the formation of non‐perovskite phases, the WBG perovskites (Eg ≈ 1.75 eV) exhibit excellent light‐induced phase, thermal, and air stability, as well as device performance with a high Voc of 1.23 V and reduced hysteresis, with a power conversion efficiency (PCE) of 17.8%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201706275</identifier><identifier>PMID: 29441615</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>amides ; Cesium ; Crystal defects ; Crystallization ; defects ; Energy conversion efficiency ; Hysteresis ; Materials science ; perovskite solar cells ; Perovskites ; Phase stability ; Photovoltaic cells ; Solar cells ; Stability augmentation ; Thermal stability ; wide‐bandgap perovskites</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1706275-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-fc8821735b39b937a563f0a1e6a9130be8ffbac9105f3c6ec0418778ad1de5d63</citedby><cites>FETCH-LOGICAL-c4105-fc8821735b39b937a563f0a1e6a9130be8ffbac9105f3c6ec0418778ad1de5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201706275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201706275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29441615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Junghwan</creatorcontrib><creatorcontrib>Saidaminov, Makhsud I.</creatorcontrib><creatorcontrib>Tan, Hairen</creatorcontrib><creatorcontrib>Zhao, Yicheng</creatorcontrib><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Choi, Jongmin</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><creatorcontrib>Fan, James</creatorcontrib><creatorcontrib>Quintero‐Bermudez, Rafael</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Quan, Li Na</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><title>Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.
The highly polar solvent additive, formamide, enables phase‐selective crystallization in wide‐bandgap (WBG) perovskites. By suppressing the formation of non‐perovskite phases, the WBG perovskites (Eg ≈ 1.75 eV) exhibit excellent light‐induced phase, thermal, and air stability, as well as device performance with a high Voc of 1.23 V and reduced hysteresis, with a power conversion efficiency (PCE) of 17.8%.</description><subject>amides</subject><subject>Cesium</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>defects</subject><subject>Energy conversion efficiency</subject><subject>Hysteresis</subject><subject>Materials science</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Phase stability</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability augmentation</subject><subject>Thermal stability</subject><subject>wide‐bandgap perovskites</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouq5ePUrBi5euk7ZJm-O6foKi-IHHkiZTjfZjbVqlnvwJ_kZ_iVl2VfDiaWDyzJNhXkK2KIwoQLAndSlHAdAYeBCzJTKgLKB-BIItkwGIkPmCR8kaWbf2EQAEB75K1gIRRZRTNiAP49Jo_Hz_mMhWFv0bau_yQdpZ5xoLVK15QW_S9Na9FuZNtqauvCvUnULrHWDuCFcqa9reM5V3N5fty0rfy6l3iU39Yp9Mi3aDrOSysLi5qENye3R4Mznxzy6OTyfjM19FFJifqyQJaByyLBSZCGPJeJiDpMiloCFkmOR5JpVwbB4qjgoimsRxIjXVyDQPh2R37p029XOHtk1LYxUWhayw7mwauKu5DyBKHLrzB32su6Zy2zmKijgKYjETjuaUamprG8zTaWNK2fQphXSWQTrLIP3JwA1sL7RdVqL-wb-P7gAxB15Ngf0_unR8cD7-lX8BMMeWHQ</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Kim, Junghwan</creator><creator>Saidaminov, Makhsud I.</creator><creator>Tan, Hairen</creator><creator>Zhao, Yicheng</creator><creator>Kim, Younghoon</creator><creator>Choi, Jongmin</creator><creator>Jo, Jea Woong</creator><creator>Fan, James</creator><creator>Quintero‐Bermudez, Rafael</creator><creator>Yang, Zhenyu</creator><creator>Quan, Li Na</creator><creator>Wei, Mingyang</creator><creator>Voznyy, Oleksandr</creator><creator>Sargent, Edward H.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites</title><author>Kim, Junghwan ; Saidaminov, Makhsud I. ; Tan, Hairen ; Zhao, Yicheng ; Kim, Younghoon ; Choi, Jongmin ; Jo, Jea Woong ; Fan, James ; Quintero‐Bermudez, Rafael ; Yang, Zhenyu ; Quan, Li Na ; Wei, Mingyang ; Voznyy, Oleksandr ; Sargent, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-fc8821735b39b937a563f0a1e6a9130be8ffbac9105f3c6ec0418778ad1de5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amides</topic><topic>Cesium</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>defects</topic><topic>Energy conversion efficiency</topic><topic>Hysteresis</topic><topic>Materials science</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Phase stability</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability augmentation</topic><topic>Thermal stability</topic><topic>wide‐bandgap perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Junghwan</creatorcontrib><creatorcontrib>Saidaminov, Makhsud I.</creatorcontrib><creatorcontrib>Tan, Hairen</creatorcontrib><creatorcontrib>Zhao, Yicheng</creatorcontrib><creatorcontrib>Kim, Younghoon</creatorcontrib><creatorcontrib>Choi, Jongmin</creatorcontrib><creatorcontrib>Jo, Jea Woong</creatorcontrib><creatorcontrib>Fan, James</creatorcontrib><creatorcontrib>Quintero‐Bermudez, Rafael</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Quan, Li Na</creatorcontrib><creatorcontrib>Wei, Mingyang</creatorcontrib><creatorcontrib>Voznyy, Oleksandr</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Junghwan</au><au>Saidaminov, Makhsud I.</au><au>Tan, Hairen</au><au>Zhao, Yicheng</au><au>Kim, Younghoon</au><au>Choi, Jongmin</au><au>Jo, Jea Woong</au><au>Fan, James</au><au>Quintero‐Bermudez, Rafael</au><au>Yang, Zhenyu</au><au>Quan, Li Na</au><au>Wei, Mingyang</au><au>Voznyy, Oleksandr</au><au>Sargent, Edward H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>13</issue><spage>e1706275</spage><epage>n/a</epage><pages>e1706275-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.
The highly polar solvent additive, formamide, enables phase‐selective crystallization in wide‐bandgap (WBG) perovskites. By suppressing the formation of non‐perovskite phases, the WBG perovskites (Eg ≈ 1.75 eV) exhibit excellent light‐induced phase, thermal, and air stability, as well as device performance with a high Voc of 1.23 V and reduced hysteresis, with a power conversion efficiency (PCE) of 17.8%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29441615</pmid><doi>10.1002/adma.201706275</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1706275-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2002217048 |
source | Access via Wiley Online Library |
subjects | amides Cesium Crystal defects Crystallization defects Energy conversion efficiency Hysteresis Materials science perovskite solar cells Perovskites Phase stability Photovoltaic cells Solar cells Stability augmentation Thermal stability wide‐bandgap perovskites |
title | Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amide%E2%80%90Catalyzed%20Phase%E2%80%90Selective%20Crystallization%20Reduces%20Defect%20Density%20in%20Wide%E2%80%90Bandgap%20Perovskites&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Junghwan&rft.date=2018-03&rft.volume=30&rft.issue=13&rft.spage=e1706275&rft.epage=n/a&rft.pages=e1706275-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201706275&rft_dat=%3Cproquest_cross%3E2002217048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742796&rft_id=info:pmid/29441615&rfr_iscdi=true |