Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer

Background Partin tables represent the most widely used predictive tool for prostate cancer stage at prostatectomy but with potential limitations. Purpose To develop a new PartinMR model for organ‐confined prostate cancer (OCPCA) by incorporating Partin table and mp‐MRI with a support vector machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2018-08, Vol.48 (2), p.499-506
Hauptverfasser: Wang, Jing, Wu, Chen‐Jiang, Bao, Mei‐Ling, Zhang, Jing, Shi, Hai‐Bin, Zhang, Yu‐Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 2
container_start_page 499
container_title Journal of magnetic resonance imaging
container_volume 48
creator Wang, Jing
Wu, Chen‐Jiang
Bao, Mei‐Ling
Zhang, Jing
Shi, Hai‐Bin
Zhang, Yu‐Dong
description Background Partin tables represent the most widely used predictive tool for prostate cancer stage at prostatectomy but with potential limitations. Purpose To develop a new PartinMR model for organ‐confined prostate cancer (OCPCA) by incorporating Partin table and mp‐MRI with a support vector machine (SVM) analysis. Study Type Retrospective. Population In all, 541 patients with biopsy‐confirmed prostate cancer underwent mp‐MRI. Field Strength T2‐weighted, diffusion‐weighted imaging with a 3.0T MR scanner. Assessment Candidate predictors included age, prostate‐specific antigen, clinical stage, biopsy Gleason score (GS), and mp‐MRI findings, ie, tumor location, Prostate Imaging and Reporting and Data System (PI‐RADS) score, diameter (D‐max), and 6‐point MR stage. The PartinMR model with combination of a Partin table and mp‐MRI findings was developed using SVM and 5‐fold crossvalidation analysis. Statistical Tests The predicted ability of the PartinMR model was compared with a standard Partin and a modified Partin table (mPartin) which used for mp‐MRI staging. Statistical tests were made by area under receiver operating characteristic curve (AUC), adjusted proportional hazard ratio (HR), and a cost‐effective benefit analysis. Results The rate of OCPCA at prostatectomy was 46.4% (251/541). Using MR staging, mPartin table (AUC, 0.814, 95% confidence interval [CI]: 0.779–0.846, P = 0.001) is appreciably better than the Partin table (AUC, 0.730, 95% CI: 0.690–0.767). Contrarily, adding all MR variables, the PartinMR model (AUC, 0.891, 95% CI: 0.884–0.899, P 
doi_str_mv 10.1002/jmri.25961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2001913649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001913649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4051-343800c513038129bc4085bff1611f898f028a14cd81beda1430cc7a8605b5463</originalsourceid><addsrcrecordid>eNp9kc9O3DAQh60KVP60lz4AssQFIQVm7Dhr94ZQW0CgVqicI8dxwKvEXuwEtLc-Qp-xT4KXBQ49cPLI-uYbzfwI-YJwhADseD5Ed8SEqvAD2UbBWMGErDZyDYIXKGG2RXZSmgOAUqX4SLaYKvmMVXKbTDfJ-VuapsUixJE-WDOGSAdt7py3VHvdL5NLdAxUp2RTor90HJ2_uv5KT6i3j3QRbevM6IKnQ2htT7vcH-Kt9v_-_DXBd9nTZiqkUY-WGu2NjZ_IZqf7ZD-_vLvk5vu336dnxeXPH-enJ5eFKUFgwUsuAYxADlwiU03-lqLpOqwQO6lkB0xqLE0rsbFtrjgYM9OyAtGIsuK75GDtzfPvJ5vGenDJ2L7X3oYp1QwAFfKqVBnd_w-dhynm_VeULDmiYiJTh2vK5IVStF29iG7QcVkj1Ksw6lUY9XMYGd57UU7NYNs39PX6GcA18Oh6u3xHVV9cXZ-vpU_AgpU2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084311925</pqid></control><display><type>article</type><title>Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wang, Jing ; Wu, Chen‐Jiang ; Bao, Mei‐Ling ; Zhang, Jing ; Shi, Hai‐Bin ; Zhang, Yu‐Dong</creator><creatorcontrib>Wang, Jing ; Wu, Chen‐Jiang ; Bao, Mei‐Ling ; Zhang, Jing ; Shi, Hai‐Bin ; Zhang, Yu‐Dong</creatorcontrib><description>Background Partin tables represent the most widely used predictive tool for prostate cancer stage at prostatectomy but with potential limitations. Purpose To develop a new PartinMR model for organ‐confined prostate cancer (OCPCA) by incorporating Partin table and mp‐MRI with a support vector machine (SVM) analysis. Study Type Retrospective. Population In all, 541 patients with biopsy‐confirmed prostate cancer underwent mp‐MRI. Field Strength T2‐weighted, diffusion‐weighted imaging with a 3.0T MR scanner. Assessment Candidate predictors included age, prostate‐specific antigen, clinical stage, biopsy Gleason score (GS), and mp‐MRI findings, ie, tumor location, Prostate Imaging and Reporting and Data System (PI‐RADS) score, diameter (D‐max), and 6‐point MR stage. The PartinMR model with combination of a Partin table and mp‐MRI findings was developed using SVM and 5‐fold crossvalidation analysis. Statistical Tests The predicted ability of the PartinMR model was compared with a standard Partin and a modified Partin table (mPartin) which used for mp‐MRI staging. Statistical tests were made by area under receiver operating characteristic curve (AUC), adjusted proportional hazard ratio (HR), and a cost‐effective benefit analysis. Results The rate of OCPCA at prostatectomy was 46.4% (251/541). Using MR staging, mPartin table (AUC, 0.814, 95% confidence interval [CI]: 0.779–0.846, P = 0.001) is appreciably better than the Partin table (AUC, 0.730, 95% CI: 0.690–0.767). Contrarily, adding all MR variables, the PartinMR model (AUC, 0.891, 95% CI: 0.884–0.899, P &lt; 0.001) outperformed any other scheme, with 79.3% sensitivity, 75.7% specificity, 79% positive predictive value, and 76.0% negative predictive value for OCPCA. MR stage represented the most influential predictor of extracapsular extension (HR, 2.77, 95% CI: 1.54–3.33), followed by D‐max (2.01, 95% CI: 1.31–2.68), biopsy GS (1.64, 95% CI: 1.35–2.12), and PI‐RADS score (1.21, 95% CI: 1.01–1.98). Data Conclusion The new PartinMR model is superior to the conventional Partin table for OCPCA. Clinical implications of mp‐MRI for prostate cancer stage must be confirmed in further trials. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2018;48:499–506.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25961</identifier><identifier>PMID: 29437268</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biopsy ; Cancer ; Cancer surgery ; Clinical trials ; Confidence intervals ; confined prostate cancer ; Cost benefit analysis ; Field strength ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; multiparametric magnetic resonance imaging ; Partin tables ; Population (statistical) ; Population studies ; Prediction models ; Prostate cancer ; Prostatectomy ; radical prostatectomy ; Statistical analysis ; Statistical tests ; support vector machine ; Support vector machines ; Tables ; Urological surgery</subject><ispartof>Journal of magnetic resonance imaging, 2018-08, Vol.48 (2), p.499-506</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4051-343800c513038129bc4085bff1611f898f028a14cd81beda1430cc7a8605b5463</citedby><cites>FETCH-LOGICAL-c4051-343800c513038129bc4085bff1611f898f028a14cd81beda1430cc7a8605b5463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.25961$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.25961$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29437268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wu, Chen‐Jiang</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Hai‐Bin</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><title>Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Partin tables represent the most widely used predictive tool for prostate cancer stage at prostatectomy but with potential limitations. Purpose To develop a new PartinMR model for organ‐confined prostate cancer (OCPCA) by incorporating Partin table and mp‐MRI with a support vector machine (SVM) analysis. Study Type Retrospective. Population In all, 541 patients with biopsy‐confirmed prostate cancer underwent mp‐MRI. Field Strength T2‐weighted, diffusion‐weighted imaging with a 3.0T MR scanner. Assessment Candidate predictors included age, prostate‐specific antigen, clinical stage, biopsy Gleason score (GS), and mp‐MRI findings, ie, tumor location, Prostate Imaging and Reporting and Data System (PI‐RADS) score, diameter (D‐max), and 6‐point MR stage. The PartinMR model with combination of a Partin table and mp‐MRI findings was developed using SVM and 5‐fold crossvalidation analysis. Statistical Tests The predicted ability of the PartinMR model was compared with a standard Partin and a modified Partin table (mPartin) which used for mp‐MRI staging. Statistical tests were made by area under receiver operating characteristic curve (AUC), adjusted proportional hazard ratio (HR), and a cost‐effective benefit analysis. Results The rate of OCPCA at prostatectomy was 46.4% (251/541). Using MR staging, mPartin table (AUC, 0.814, 95% confidence interval [CI]: 0.779–0.846, P = 0.001) is appreciably better than the Partin table (AUC, 0.730, 95% CI: 0.690–0.767). Contrarily, adding all MR variables, the PartinMR model (AUC, 0.891, 95% CI: 0.884–0.899, P &lt; 0.001) outperformed any other scheme, with 79.3% sensitivity, 75.7% specificity, 79% positive predictive value, and 76.0% negative predictive value for OCPCA. MR stage represented the most influential predictor of extracapsular extension (HR, 2.77, 95% CI: 1.54–3.33), followed by D‐max (2.01, 95% CI: 1.31–2.68), biopsy GS (1.64, 95% CI: 1.35–2.12), and PI‐RADS score (1.21, 95% CI: 1.01–1.98). Data Conclusion The new PartinMR model is superior to the conventional Partin table for OCPCA. Clinical implications of mp‐MRI for prostate cancer stage must be confirmed in further trials. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2018;48:499–506.</description><subject>Biopsy</subject><subject>Cancer</subject><subject>Cancer surgery</subject><subject>Clinical trials</subject><subject>Confidence intervals</subject><subject>confined prostate cancer</subject><subject>Cost benefit analysis</subject><subject>Field strength</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>multiparametric magnetic resonance imaging</subject><subject>Partin tables</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>Prediction models</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>radical prostatectomy</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Tables</subject><subject>Urological surgery</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O3DAQh60KVP60lz4AssQFIQVm7Dhr94ZQW0CgVqicI8dxwKvEXuwEtLc-Qp-xT4KXBQ49cPLI-uYbzfwI-YJwhADseD5Ed8SEqvAD2UbBWMGErDZyDYIXKGG2RXZSmgOAUqX4SLaYKvmMVXKbTDfJ-VuapsUixJE-WDOGSAdt7py3VHvdL5NLdAxUp2RTor90HJ2_uv5KT6i3j3QRbevM6IKnQ2htT7vcH-Kt9v_-_DXBd9nTZiqkUY-WGu2NjZ_IZqf7ZD-_vLvk5vu336dnxeXPH-enJ5eFKUFgwUsuAYxADlwiU03-lqLpOqwQO6lkB0xqLE0rsbFtrjgYM9OyAtGIsuK75GDtzfPvJ5vGenDJ2L7X3oYp1QwAFfKqVBnd_w-dhynm_VeULDmiYiJTh2vK5IVStF29iG7QcVkj1Ksw6lUY9XMYGd57UU7NYNs39PX6GcA18Oh6u3xHVV9cXZ-vpU_AgpU2</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Wang, Jing</creator><creator>Wu, Chen‐Jiang</creator><creator>Bao, Mei‐Ling</creator><creator>Zhang, Jing</creator><creator>Shi, Hai‐Bin</creator><creator>Zhang, Yu‐Dong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201808</creationdate><title>Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer</title><author>Wang, Jing ; Wu, Chen‐Jiang ; Bao, Mei‐Ling ; Zhang, Jing ; Shi, Hai‐Bin ; Zhang, Yu‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4051-343800c513038129bc4085bff1611f898f028a14cd81beda1430cc7a8605b5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biopsy</topic><topic>Cancer</topic><topic>Cancer surgery</topic><topic>Clinical trials</topic><topic>Confidence intervals</topic><topic>confined prostate cancer</topic><topic>Cost benefit analysis</topic><topic>Field strength</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>multiparametric magnetic resonance imaging</topic><topic>Partin tables</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>Prediction models</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>radical prostatectomy</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Tables</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wu, Chen‐Jiang</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Hai‐Bin</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Wu, Chen‐Jiang</au><au>Bao, Mei‐Ling</au><au>Zhang, Jing</au><au>Shi, Hai‐Bin</au><au>Zhang, Yu‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2018-08</date><risdate>2018</risdate><volume>48</volume><issue>2</issue><spage>499</spage><epage>506</epage><pages>499-506</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Partin tables represent the most widely used predictive tool for prostate cancer stage at prostatectomy but with potential limitations. Purpose To develop a new PartinMR model for organ‐confined prostate cancer (OCPCA) by incorporating Partin table and mp‐MRI with a support vector machine (SVM) analysis. Study Type Retrospective. Population In all, 541 patients with biopsy‐confirmed prostate cancer underwent mp‐MRI. Field Strength T2‐weighted, diffusion‐weighted imaging with a 3.0T MR scanner. Assessment Candidate predictors included age, prostate‐specific antigen, clinical stage, biopsy Gleason score (GS), and mp‐MRI findings, ie, tumor location, Prostate Imaging and Reporting and Data System (PI‐RADS) score, diameter (D‐max), and 6‐point MR stage. The PartinMR model with combination of a Partin table and mp‐MRI findings was developed using SVM and 5‐fold crossvalidation analysis. Statistical Tests The predicted ability of the PartinMR model was compared with a standard Partin and a modified Partin table (mPartin) which used for mp‐MRI staging. Statistical tests were made by area under receiver operating characteristic curve (AUC), adjusted proportional hazard ratio (HR), and a cost‐effective benefit analysis. Results The rate of OCPCA at prostatectomy was 46.4% (251/541). Using MR staging, mPartin table (AUC, 0.814, 95% confidence interval [CI]: 0.779–0.846, P = 0.001) is appreciably better than the Partin table (AUC, 0.730, 95% CI: 0.690–0.767). Contrarily, adding all MR variables, the PartinMR model (AUC, 0.891, 95% CI: 0.884–0.899, P &lt; 0.001) outperformed any other scheme, with 79.3% sensitivity, 75.7% specificity, 79% positive predictive value, and 76.0% negative predictive value for OCPCA. MR stage represented the most influential predictor of extracapsular extension (HR, 2.77, 95% CI: 1.54–3.33), followed by D‐max (2.01, 95% CI: 1.31–2.68), biopsy GS (1.64, 95% CI: 1.35–2.12), and PI‐RADS score (1.21, 95% CI: 1.01–1.98). Data Conclusion The new PartinMR model is superior to the conventional Partin table for OCPCA. Clinical implications of mp‐MRI for prostate cancer stage must be confirmed in further trials. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2018;48:499–506.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29437268</pmid><doi>10.1002/jmri.25961</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2018-08, Vol.48 (2), p.499-506
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2001913649
source Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Biopsy
Cancer
Cancer surgery
Clinical trials
Confidence intervals
confined prostate cancer
Cost benefit analysis
Field strength
Magnetic resonance imaging
Mathematical models
Medical imaging
multiparametric magnetic resonance imaging
Partin tables
Population (statistical)
Population studies
Prediction models
Prostate cancer
Prostatectomy
radical prostatectomy
Statistical analysis
Statistical tests
support vector machine
Support vector machines
Tables
Urological surgery
title Using support vector machine analysis to assess PartinMR: A new prediction model for organ‐confined prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20support%20vector%20machine%20analysis%20to%20assess%20PartinMR:%20A%20new%20prediction%20model%20for%20organ%E2%80%90confined%20prostate%20cancer&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Wang,%20Jing&rft.date=2018-08&rft.volume=48&rft.issue=2&rft.spage=499&rft.epage=506&rft.pages=499-506&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25961&rft_dat=%3Cproquest_cross%3E2001913649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084311925&rft_id=info:pmid/29437268&rfr_iscdi=true