Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?

Summary Background and objective:  The activity of thiopurine S‐methyltransferase (TPMT), a key enzyme in the metabolism of purine analogues, displays wide inter‐subject variability partly due to a genetic polymorphism. Previous studies have suggested adjusting purine analogues dosing according to T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical pharmacy and therapeutics 2007-12, Vol.32 (6), p.633-639
Hauptverfasser: Fakhoury, M., Andreu-Gallien, J., Mahr, A., Medard, Y., Azougagh, S., Vilmer, E., Jacqz-Aigrain, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 6
container_start_page 633
container_title Journal of clinical pharmacy and therapeutics
container_volume 32
creator Fakhoury, M.
Andreu-Gallien, J.
Mahr, A.
Medard, Y.
Azougagh, S.
Vilmer, E.
Jacqz-Aigrain, E.
description Summary Background and objective:  The activity of thiopurine S‐methyltransferase (TPMT), a key enzyme in the metabolism of purine analogues, displays wide inter‐subject variability partly due to a genetic polymorphism. Previous studies have suggested adjusting purine analogues dosing according to TPMT activity but measurements are costly and time‐consuming. It is still unclear, especially under treatment, whether the simpler TPMT genotyping reliably predicts enzyme activity. Our aim was to study the possible correlation of TPMT genotype with phenotype. Methods:  We determined the genotypic status and TMPT activity, at diagnosis and after 6 months of maintenance therapy, of 118 children with acute lymphoblastic leukaemia (ALL). Results and Discussion:  Eighty‐nine per cent of the children had a homozygous wild‐type genotype (group 1), 11% had one or two mutant allele(s) (group 2). At both time points, TPMT activity (U/mL peripheral red blood cell) was significantly higher in group 1 than in group 2 (P 
doi_str_mv 10.1111/j.1365-2710.2007.00858.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20011136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20011136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5168-c048e4bdfb5dadfe7ac5839791be701f04837c33587a1fb239ffaf595ce103733</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EotvCX0C-wC2LHSd2ckAIraAFtbBSF3G0HGfMeut8YDt0c-Kv42VX7RVfbM0874z1IIQpWdJ03u6WlPEyy0Uq5ISIJSFVWS33T9DiofEULUjO66wQuThD5yHsCCFc5Ow5OqMVySkr8gX6c7sdJtfizfpmg39CP8R5BKz6Fisd7W8bZ9wAngK0OA64G3obB4951oHXaozDOHnbA44eVOygj9j2WG-taz30-N7GbZozRcBu7sbt0DgVotXYwXSnoLPq_Qv0zCgX4OXpvkDfP33crK6y62-Xn1cfrjNdUl5lmhQVFE1rmrJVrQGhdFmxWtS0AUGoSW0mNGNlJRQ1Tc5qY5Qp61IDJUwwdoHeHOeOfvg1QYiys0GDc6qHYQoyWUxiGU9gdQS1H0LwYOTobaf8LCmRB_lyJw-O5cHxISbkP_lyn6KvTjumpoP2MXiynYDXJ0AFrZzxqtc2PHJ1xTnJSeLeHbl762D-7w_IL6v1Jr1SPjvmbYiwf8grfye5YKKUP75eSs74uiDVjbxlfwETyLDt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20011136</pqid></control><display><type>article</type><title>Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Fakhoury, M. ; Andreu-Gallien, J. ; Mahr, A. ; Medard, Y. ; Azougagh, S. ; Vilmer, E. ; Jacqz-Aigrain, E.</creator><creatorcontrib>Fakhoury, M. ; Andreu-Gallien, J. ; Mahr, A. ; Medard, Y. ; Azougagh, S. ; Vilmer, E. ; Jacqz-Aigrain, E.</creatorcontrib><description>Summary Background and objective:  The activity of thiopurine S‐methyltransferase (TPMT), a key enzyme in the metabolism of purine analogues, displays wide inter‐subject variability partly due to a genetic polymorphism. Previous studies have suggested adjusting purine analogues dosing according to TPMT activity but measurements are costly and time‐consuming. It is still unclear, especially under treatment, whether the simpler TPMT genotyping reliably predicts enzyme activity. Our aim was to study the possible correlation of TPMT genotype with phenotype. Methods:  We determined the genotypic status and TMPT activity, at diagnosis and after 6 months of maintenance therapy, of 118 children with acute lymphoblastic leukaemia (ALL). Results and Discussion:  Eighty‐nine per cent of the children had a homozygous wild‐type genotype (group 1), 11% had one or two mutant allele(s) (group 2). At both time points, TPMT activity (U/mL peripheral red blood cell) was significantly higher in group 1 than in group 2 (P &lt; 0·001) but inter‐group levels overlapped considerably. There was considerable heterogeneity in the percentage increase in TPMT activity after therapy, and little correlation between metabolites ratio [6‐methylmercaptopurine derivative/6‐thioguanine nucleotides (6‐TGN)] and TPMT activity at the end of 6 months’ maintenance treatment. These results show that TPMT activity cannot be used as an accurate tool for 6‐mercaptopurine monitoring. Conclusion:  Genotyping at diagnosis identifies patients with a homozygous mutant TPMT and may prevent severe and life‐threatening toxicity. ALL treatment monitoring should preferentially be based on repeated determinations of intracellular active metabolites (6‐TGN) and methylated metabolites.</description><identifier>ISSN: 0269-4727</identifier><identifier>EISSN: 1365-2710</identifier><identifier>DOI: 10.1111/j.1365-2710.2007.00858.x</identifier><identifier>PMID: 18021342</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>6-mercaptopurine ; acute lymphoblastic leukaemia ; Adolescent ; Antimetabolites, Antineoplastic - therapeutic use ; Biological and medical sciences ; Child ; Child, Preschool ; Erythrocytes - enzymology ; Female ; Genotype ; Hematologic and hematopoietic diseases ; Humans ; Infant ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Male ; Medical sciences ; Mercaptopurine - metabolism ; Mercaptopurine - therapeutic use ; Methyltransferases - genetics ; Methyltransferases - metabolism ; pharmacogenetics ; Pharmacology. Drug treatments ; phenotype ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; thiopurine S-methyltransferase</subject><ispartof>Journal of clinical pharmacy and therapeutics, 2007-12, Vol.32 (6), p.633-639</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5168-c048e4bdfb5dadfe7ac5839791be701f04837c33587a1fb239ffaf595ce103733</citedby><cites>FETCH-LOGICAL-c5168-c048e4bdfb5dadfe7ac5839791be701f04837c33587a1fb239ffaf595ce103733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2710.2007.00858.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2710.2007.00858.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19866020$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18021342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakhoury, M.</creatorcontrib><creatorcontrib>Andreu-Gallien, J.</creatorcontrib><creatorcontrib>Mahr, A.</creatorcontrib><creatorcontrib>Medard, Y.</creatorcontrib><creatorcontrib>Azougagh, S.</creatorcontrib><creatorcontrib>Vilmer, E.</creatorcontrib><creatorcontrib>Jacqz-Aigrain, E.</creatorcontrib><title>Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?</title><title>Journal of clinical pharmacy and therapeutics</title><addtitle>J Clin Pharm Ther</addtitle><description>Summary Background and objective:  The activity of thiopurine S‐methyltransferase (TPMT), a key enzyme in the metabolism of purine analogues, displays wide inter‐subject variability partly due to a genetic polymorphism. Previous studies have suggested adjusting purine analogues dosing according to TPMT activity but measurements are costly and time‐consuming. It is still unclear, especially under treatment, whether the simpler TPMT genotyping reliably predicts enzyme activity. Our aim was to study the possible correlation of TPMT genotype with phenotype. Methods:  We determined the genotypic status and TMPT activity, at diagnosis and after 6 months of maintenance therapy, of 118 children with acute lymphoblastic leukaemia (ALL). Results and Discussion:  Eighty‐nine per cent of the children had a homozygous wild‐type genotype (group 1), 11% had one or two mutant allele(s) (group 2). At both time points, TPMT activity (U/mL peripheral red blood cell) was significantly higher in group 1 than in group 2 (P &lt; 0·001) but inter‐group levels overlapped considerably. There was considerable heterogeneity in the percentage increase in TPMT activity after therapy, and little correlation between metabolites ratio [6‐methylmercaptopurine derivative/6‐thioguanine nucleotides (6‐TGN)] and TPMT activity at the end of 6 months’ maintenance treatment. These results show that TPMT activity cannot be used as an accurate tool for 6‐mercaptopurine monitoring. Conclusion:  Genotyping at diagnosis identifies patients with a homozygous mutant TPMT and may prevent severe and life‐threatening toxicity. ALL treatment monitoring should preferentially be based on repeated determinations of intracellular active metabolites (6‐TGN) and methylated metabolites.</description><subject>6-mercaptopurine</subject><subject>acute lymphoblastic leukaemia</subject><subject>Adolescent</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Erythrocytes - enzymology</subject><subject>Female</subject><subject>Genotype</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Humans</subject><subject>Infant</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mercaptopurine - metabolism</subject><subject>Mercaptopurine - therapeutic use</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>pharmacogenetics</subject><subject>Pharmacology. Drug treatments</subject><subject>phenotype</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>thiopurine S-methyltransferase</subject><issn>0269-4727</issn><issn>1365-2710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EotvCX0C-wC2LHSd2ckAIraAFtbBSF3G0HGfMeut8YDt0c-Kv42VX7RVfbM0874z1IIQpWdJ03u6WlPEyy0Uq5ISIJSFVWS33T9DiofEULUjO66wQuThD5yHsCCFc5Ow5OqMVySkr8gX6c7sdJtfizfpmg39CP8R5BKz6Fisd7W8bZ9wAngK0OA64G3obB4951oHXaozDOHnbA44eVOygj9j2WG-taz30-N7GbZozRcBu7sbt0DgVotXYwXSnoLPq_Qv0zCgX4OXpvkDfP33crK6y62-Xn1cfrjNdUl5lmhQVFE1rmrJVrQGhdFmxWtS0AUGoSW0mNGNlJRQ1Tc5qY5Qp61IDJUwwdoHeHOeOfvg1QYiys0GDc6qHYQoyWUxiGU9gdQS1H0LwYOTobaf8LCmRB_lyJw-O5cHxISbkP_lyn6KvTjumpoP2MXiynYDXJ0AFrZzxqtc2PHJ1xTnJSeLeHbl762D-7w_IL6v1Jr1SPjvmbYiwf8grfye5YKKUP75eSs74uiDVjbxlfwETyLDt</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Fakhoury, M.</creator><creator>Andreu-Gallien, J.</creator><creator>Mahr, A.</creator><creator>Medard, Y.</creator><creator>Azougagh, S.</creator><creator>Vilmer, E.</creator><creator>Jacqz-Aigrain, E.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>200712</creationdate><title>Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?</title><author>Fakhoury, M. ; Andreu-Gallien, J. ; Mahr, A. ; Medard, Y. ; Azougagh, S. ; Vilmer, E. ; Jacqz-Aigrain, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5168-c048e4bdfb5dadfe7ac5839791be701f04837c33587a1fb239ffaf595ce103733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>6-mercaptopurine</topic><topic>acute lymphoblastic leukaemia</topic><topic>Adolescent</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Erythrocytes - enzymology</topic><topic>Female</topic><topic>Genotype</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Humans</topic><topic>Infant</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mercaptopurine - metabolism</topic><topic>Mercaptopurine - therapeutic use</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>pharmacogenetics</topic><topic>Pharmacology. Drug treatments</topic><topic>phenotype</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>thiopurine S-methyltransferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakhoury, M.</creatorcontrib><creatorcontrib>Andreu-Gallien, J.</creatorcontrib><creatorcontrib>Mahr, A.</creatorcontrib><creatorcontrib>Medard, Y.</creatorcontrib><creatorcontrib>Azougagh, S.</creatorcontrib><creatorcontrib>Vilmer, E.</creatorcontrib><creatorcontrib>Jacqz-Aigrain, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Journal of clinical pharmacy and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fakhoury, M.</au><au>Andreu-Gallien, J.</au><au>Mahr, A.</au><au>Medard, Y.</au><au>Azougagh, S.</au><au>Vilmer, E.</au><au>Jacqz-Aigrain, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?</atitle><jtitle>Journal of clinical pharmacy and therapeutics</jtitle><addtitle>J Clin Pharm Ther</addtitle><date>2007-12</date><risdate>2007</risdate><volume>32</volume><issue>6</issue><spage>633</spage><epage>639</epage><pages>633-639</pages><issn>0269-4727</issn><eissn>1365-2710</eissn><abstract>Summary Background and objective:  The activity of thiopurine S‐methyltransferase (TPMT), a key enzyme in the metabolism of purine analogues, displays wide inter‐subject variability partly due to a genetic polymorphism. Previous studies have suggested adjusting purine analogues dosing according to TPMT activity but measurements are costly and time‐consuming. It is still unclear, especially under treatment, whether the simpler TPMT genotyping reliably predicts enzyme activity. Our aim was to study the possible correlation of TPMT genotype with phenotype. Methods:  We determined the genotypic status and TMPT activity, at diagnosis and after 6 months of maintenance therapy, of 118 children with acute lymphoblastic leukaemia (ALL). Results and Discussion:  Eighty‐nine per cent of the children had a homozygous wild‐type genotype (group 1), 11% had one or two mutant allele(s) (group 2). At both time points, TPMT activity (U/mL peripheral red blood cell) was significantly higher in group 1 than in group 2 (P &lt; 0·001) but inter‐group levels overlapped considerably. There was considerable heterogeneity in the percentage increase in TPMT activity after therapy, and little correlation between metabolites ratio [6‐methylmercaptopurine derivative/6‐thioguanine nucleotides (6‐TGN)] and TPMT activity at the end of 6 months’ maintenance treatment. These results show that TPMT activity cannot be used as an accurate tool for 6‐mercaptopurine monitoring. Conclusion:  Genotyping at diagnosis identifies patients with a homozygous mutant TPMT and may prevent severe and life‐threatening toxicity. ALL treatment monitoring should preferentially be based on repeated determinations of intracellular active metabolites (6‐TGN) and methylated metabolites.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18021342</pmid><doi>10.1111/j.1365-2710.2007.00858.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-4727
ispartof Journal of clinical pharmacy and therapeutics, 2007-12, Vol.32 (6), p.633-639
issn 0269-4727
1365-2710
language eng
recordid cdi_proquest_miscellaneous_20011136
source MEDLINE; Wiley Online Library All Journals
subjects 6-mercaptopurine
acute lymphoblastic leukaemia
Adolescent
Antimetabolites, Antineoplastic - therapeutic use
Biological and medical sciences
Child
Child, Preschool
Erythrocytes - enzymology
Female
Genotype
Hematologic and hematopoietic diseases
Humans
Infant
Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis
Male
Medical sciences
Mercaptopurine - metabolism
Mercaptopurine - therapeutic use
Methyltransferases - genetics
Methyltransferases - metabolism
pharmacogenetics
Pharmacology. Drug treatments
phenotype
Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
thiopurine S-methyltransferase
title Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Should%20TPMT%20genotype%20and%20activity%20be%20used%20to%20monitor%206-mercaptopurine%20treatment%20in%20children%20with%20acute%20lymphoblastic%20leukaemia?&rft.jtitle=Journal%20of%20clinical%20pharmacy%20and%20therapeutics&rft.au=Fakhoury,%20M.&rft.date=2007-12&rft.volume=32&rft.issue=6&rft.spage=633&rft.epage=639&rft.pages=633-639&rft.issn=0269-4727&rft.eissn=1365-2710&rft_id=info:doi/10.1111/j.1365-2710.2007.00858.x&rft_dat=%3Cproquest_cross%3E20011136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20011136&rft_id=info:pmid/18021342&rfr_iscdi=true