Halide and hydroxide anion binding in water

The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF , Cl and Br compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2018, Vol.47 (10), p.3329-3338
Hauptverfasser: Savastano, M, Bazzicalupi, C, García-Gallarín, C, Giorgi, C, López de la Torre, M D, Pichierri, F, Bianchi, A, Melguizo, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3338
container_issue 10
container_start_page 3329
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 47
creator Savastano, M
Bazzicalupi, C
García-Gallarín, C
Giorgi, C
López de la Torre, M D
Pichierri, F
Bianchi, A
Melguizo, M
description The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF , Cl and Br complexes of H L2 were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF (F-H-F ) anions forming anion-π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H L2)X ] (X = HF , Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion-ligand interaction, in particular in the case of Cl and Br . In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I > F > Br > Cl which was rationalized in terms of electrostatic, hydrogen bond, anion-π interactions and solvent effects. DFT calculations performed on [(H L2)X] (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion-π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)] (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.
doi_str_mv 10.1039/c7dt04430e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2001064491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011071988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-8331c3abcc25ef6ca79c49e5e60634f5decd1371a6b60d8433747c86b85e2e493</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurF3-ABLyIEt2v7MdRYrVCwUs9h83uRFPSTd1N0P57o609eJoZeHgZXoTOCb4lmOk7K12HOWcYDtCYcClTTRk_3O9UjNBJjEuMKcUZPUYjqvkgFBujm5lpageJ8S5537jQfm2vuvVJWXtX-7ek9smn6SCcoqPKNBHOdnOCXh-ni3yWzl-envP7eWoZybpUMUYsM6W1NINKWCO15RoyEFgwXmUOrCNMEiNKgZ3ijEkurRKlyoAC12yCrra569B-9BC7YlVHC01jPLR9LCjGBAvONRno5T-6bPvgh-8GRQiWRCs1qOutsqGNMUBVrEO9MmFTEFz8VFjk8mHxW-F0wBe7yL5cgdvTv87YN0JKaRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011071988</pqid></control><display><type>article</type><title>Halide and hydroxide anion binding in water</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Savastano, M ; Bazzicalupi, C ; García-Gallarín, C ; Giorgi, C ; López de la Torre, M D ; Pichierri, F ; Bianchi, A ; Melguizo, M</creator><creatorcontrib>Savastano, M ; Bazzicalupi, C ; García-Gallarín, C ; Giorgi, C ; López de la Torre, M D ; Pichierri, F ; Bianchi, A ; Melguizo, M</creatorcontrib><description>The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF , Cl and Br complexes of H L2 were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF (F-H-F ) anions forming anion-π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H L2)X ] (X = HF , Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion-ligand interaction, in particular in the case of Cl and Br . In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I &gt; F &gt; Br &gt; Cl which was rationalized in terms of electrostatic, hydrogen bond, anion-π interactions and solvent effects. DFT calculations performed on [(H L2)X] (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion-π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)] (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c7dt04430e</identifier><identifier>PMID: 29423483</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anions ; Bonding strength ; Chemical bonds ; Complex formation ; Computational chemistry ; Continuum modeling ; Coordination compounds ; Density functional theory ; Hydrogen bonding ; Hydrogen bonds ; Ligands ; Morpholine ; Single crystals ; Solid state ; Solvation ; Stability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2018, Vol.47 (10), p.3329-3338</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-8331c3abcc25ef6ca79c49e5e60634f5decd1371a6b60d8433747c86b85e2e493</citedby><cites>FETCH-LOGICAL-c315t-8331c3abcc25ef6ca79c49e5e60634f5decd1371a6b60d8433747c86b85e2e493</cites><orcidid>0000-0002-1082-3911 ; 0000-0001-8455-9837 ; 0000-0003-3165-4456 ; 0000-0003-4602-0405 ; 0000-0003-1240-2405 ; 0000-0002-4107-4474 ; 0000-0002-2210-9547 ; 0000-0002-9780-7542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29423483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Savastano, M</creatorcontrib><creatorcontrib>Bazzicalupi, C</creatorcontrib><creatorcontrib>García-Gallarín, C</creatorcontrib><creatorcontrib>Giorgi, C</creatorcontrib><creatorcontrib>López de la Torre, M D</creatorcontrib><creatorcontrib>Pichierri, F</creatorcontrib><creatorcontrib>Bianchi, A</creatorcontrib><creatorcontrib>Melguizo, M</creatorcontrib><title>Halide and hydroxide anion binding in water</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF , Cl and Br complexes of H L2 were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF (F-H-F ) anions forming anion-π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H L2)X ] (X = HF , Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion-ligand interaction, in particular in the case of Cl and Br . In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I &gt; F &gt; Br &gt; Cl which was rationalized in terms of electrostatic, hydrogen bond, anion-π interactions and solvent effects. DFT calculations performed on [(H L2)X] (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion-π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)] (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.</description><subject>Anions</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Complex formation</subject><subject>Computational chemistry</subject><subject>Continuum modeling</subject><subject>Coordination compounds</subject><subject>Density functional theory</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Ligands</subject><subject>Morpholine</subject><subject>Single crystals</subject><subject>Solid state</subject><subject>Solvation</subject><subject>Stability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurF3-ABLyIEt2v7MdRYrVCwUs9h83uRFPSTd1N0P57o609eJoZeHgZXoTOCb4lmOk7K12HOWcYDtCYcClTTRk_3O9UjNBJjEuMKcUZPUYjqvkgFBujm5lpageJ8S5537jQfm2vuvVJWXtX-7ek9smn6SCcoqPKNBHOdnOCXh-ni3yWzl-envP7eWoZybpUMUYsM6W1NINKWCO15RoyEFgwXmUOrCNMEiNKgZ3ijEkurRKlyoAC12yCrra569B-9BC7YlVHC01jPLR9LCjGBAvONRno5T-6bPvgh-8GRQiWRCs1qOutsqGNMUBVrEO9MmFTEFz8VFjk8mHxW-F0wBe7yL5cgdvTv87YN0JKaRM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Savastano, M</creator><creator>Bazzicalupi, C</creator><creator>García-Gallarín, C</creator><creator>Giorgi, C</creator><creator>López de la Torre, M D</creator><creator>Pichierri, F</creator><creator>Bianchi, A</creator><creator>Melguizo, M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1082-3911</orcidid><orcidid>https://orcid.org/0000-0001-8455-9837</orcidid><orcidid>https://orcid.org/0000-0003-3165-4456</orcidid><orcidid>https://orcid.org/0000-0003-4602-0405</orcidid><orcidid>https://orcid.org/0000-0003-1240-2405</orcidid><orcidid>https://orcid.org/0000-0002-4107-4474</orcidid><orcidid>https://orcid.org/0000-0002-2210-9547</orcidid><orcidid>https://orcid.org/0000-0002-9780-7542</orcidid></search><sort><creationdate>2018</creationdate><title>Halide and hydroxide anion binding in water</title><author>Savastano, M ; Bazzicalupi, C ; García-Gallarín, C ; Giorgi, C ; López de la Torre, M D ; Pichierri, F ; Bianchi, A ; Melguizo, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-8331c3abcc25ef6ca79c49e5e60634f5decd1371a6b60d8433747c86b85e2e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anions</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Complex formation</topic><topic>Computational chemistry</topic><topic>Continuum modeling</topic><topic>Coordination compounds</topic><topic>Density functional theory</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Ligands</topic><topic>Morpholine</topic><topic>Single crystals</topic><topic>Solid state</topic><topic>Solvation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savastano, M</creatorcontrib><creatorcontrib>Bazzicalupi, C</creatorcontrib><creatorcontrib>García-Gallarín, C</creatorcontrib><creatorcontrib>Giorgi, C</creatorcontrib><creatorcontrib>López de la Torre, M D</creatorcontrib><creatorcontrib>Pichierri, F</creatorcontrib><creatorcontrib>Bianchi, A</creatorcontrib><creatorcontrib>Melguizo, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savastano, M</au><au>Bazzicalupi, C</au><au>García-Gallarín, C</au><au>Giorgi, C</au><au>López de la Torre, M D</au><au>Pichierri, F</au><au>Bianchi, A</au><au>Melguizo, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halide and hydroxide anion binding in water</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2018</date><risdate>2018</risdate><volume>47</volume><issue>10</issue><spage>3329</spage><epage>3338</epage><pages>3329-3338</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF , Cl and Br complexes of H L2 were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF (F-H-F ) anions forming anion-π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H L2)X ] (X = HF , Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion-ligand interaction, in particular in the case of Cl and Br . In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I &gt; F &gt; Br &gt; Cl which was rationalized in terms of electrostatic, hydrogen bond, anion-π interactions and solvent effects. DFT calculations performed on [(H L2)X] (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion-π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)] (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29423483</pmid><doi>10.1039/c7dt04430e</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1082-3911</orcidid><orcidid>https://orcid.org/0000-0001-8455-9837</orcidid><orcidid>https://orcid.org/0000-0003-3165-4456</orcidid><orcidid>https://orcid.org/0000-0003-4602-0405</orcidid><orcidid>https://orcid.org/0000-0003-1240-2405</orcidid><orcidid>https://orcid.org/0000-0002-4107-4474</orcidid><orcidid>https://orcid.org/0000-0002-2210-9547</orcidid><orcidid>https://orcid.org/0000-0002-9780-7542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2018, Vol.47 (10), p.3329-3338
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2001064491
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anions
Bonding strength
Chemical bonds
Complex formation
Computational chemistry
Continuum modeling
Coordination compounds
Density functional theory
Hydrogen bonding
Hydrogen bonds
Ligands
Morpholine
Single crystals
Solid state
Solvation
Stability
title Halide and hydroxide anion binding in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halide%20and%20hydroxide%20anion%20binding%20in%20water&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Savastano,%20M&rft.date=2018&rft.volume=47&rft.issue=10&rft.spage=3329&rft.epage=3338&rft.pages=3329-3338&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c7dt04430e&rft_dat=%3Cproquest_cross%3E2011071988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011071988&rft_id=info:pmid/29423483&rfr_iscdi=true