Tailoring Mechanically Tunable Strain Fields in Graphene

There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-03, Vol.18 (3), p.1707-1713
Hauptverfasser: Goldsche, Matthias, Sonntag, Jens, Khodkov, Tymofiy, Verbiest, Gerard Jan, Reichardt, Sven, Neumann, Christoph, Ouaj, Taoufiq, von den Driesch, Nils, Buca, Dan, Stampfer, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1713
container_issue 3
container_start_page 1707
container_title Nano letters
container_volume 18
creator Goldsche, Matthias
Sonntag, Jens
Khodkov, Tymofiy
Verbiest, Gerard Jan
Reichardt, Sven
Neumann, Christoph
Ouaj, Taoufiq
von den Driesch, Nils
Buca, Dan
Stampfer, Christoph
description There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.
doi_str_mv 10.1021/acs.nanolett.7b04774
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2001064334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001064334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJy_srHiCpakIoYKLN1dhyaynWKnQz996Rqy8h0Nzzve7qHkHsKUwqMPqGJU4--dbbrprkGkefigoyp5JBmZcku__ZCjMhNjBsAKLmEazJipWBSCBiTYoWNa0Pjv5N3a9boG4PO7ZNV71E7m3x2ARufzBvrqpgM2yLgbm29vSVXNbpo705zQr7mL6vZa7r8WLzNnpcpCkm7lJu6RsgY5KyWUGRMSp0XYFhdoDSyyvJac6OFzIQprGUGqlIzLDgFnRtJ-YQ8Hnt3of3pbezUtonGOofetn1UDIBCJjgXAyqOqAltjMHWaheaLYa9oqAOztTgTJ2dqZOzIfZwutDrra3-QmdJAwBH4BDftH3ww8P_d_4CmFB60g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001064334</pqid></control><display><type>article</type><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><source>ACS Publications</source><creator>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</creator><creatorcontrib>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</creatorcontrib><description>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04774</identifier><identifier>PMID: 29425440</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1707-1713</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</citedby><cites>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</cites><orcidid>0000-0002-1712-1234 ; 0000-0003-0169-6110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29425440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Sonntag, Jens</creatorcontrib><creatorcontrib>Khodkov, Tymofiy</creatorcontrib><creatorcontrib>Verbiest, Gerard Jan</creatorcontrib><creatorcontrib>Reichardt, Sven</creatorcontrib><creatorcontrib>Neumann, Christoph</creatorcontrib><creatorcontrib>Ouaj, Taoufiq</creatorcontrib><creatorcontrib>von den Driesch, Nils</creatorcontrib><creatorcontrib>Buca, Dan</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJy_srHiCpakIoYKLN1dhyaynWKnQz996Rqy8h0Nzzve7qHkHsKUwqMPqGJU4--dbbrprkGkefigoyp5JBmZcku__ZCjMhNjBsAKLmEazJipWBSCBiTYoWNa0Pjv5N3a9boG4PO7ZNV71E7m3x2ARufzBvrqpgM2yLgbm29vSVXNbpo705zQr7mL6vZa7r8WLzNnpcpCkm7lJu6RsgY5KyWUGRMSp0XYFhdoDSyyvJac6OFzIQprGUGqlIzLDgFnRtJ-YQ8Hnt3of3pbezUtonGOofetn1UDIBCJjgXAyqOqAltjMHWaheaLYa9oqAOztTgTJ2dqZOzIfZwutDrra3-QmdJAwBH4BDftH3ww8P_d_4CmFB60g</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Goldsche, Matthias</creator><creator>Sonntag, Jens</creator><creator>Khodkov, Tymofiy</creator><creator>Verbiest, Gerard Jan</creator><creator>Reichardt, Sven</creator><creator>Neumann, Christoph</creator><creator>Ouaj, Taoufiq</creator><creator>von den Driesch, Nils</creator><creator>Buca, Dan</creator><creator>Stampfer, Christoph</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-0169-6110</orcidid></search><sort><creationdate>20180314</creationdate><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><author>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Sonntag, Jens</creatorcontrib><creatorcontrib>Khodkov, Tymofiy</creatorcontrib><creatorcontrib>Verbiest, Gerard Jan</creatorcontrib><creatorcontrib>Reichardt, Sven</creatorcontrib><creatorcontrib>Neumann, Christoph</creatorcontrib><creatorcontrib>Ouaj, Taoufiq</creatorcontrib><creatorcontrib>von den Driesch, Nils</creatorcontrib><creatorcontrib>Buca, Dan</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldsche, Matthias</au><au>Sonntag, Jens</au><au>Khodkov, Tymofiy</au><au>Verbiest, Gerard Jan</au><au>Reichardt, Sven</au><au>Neumann, Christoph</au><au>Ouaj, Taoufiq</au><au>von den Driesch, Nils</au><au>Buca, Dan</au><au>Stampfer, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Mechanically Tunable Strain Fields in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1707</spage><epage>1713</epage><pages>1707-1713</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29425440</pmid><doi>10.1021/acs.nanolett.7b04774</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-0169-6110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-03, Vol.18 (3), p.1707-1713
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2001064334
source ACS Publications
title Tailoring Mechanically Tunable Strain Fields in Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Mechanically%20Tunable%20Strain%20Fields%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Goldsche,%20Matthias&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1707&rft.epage=1713&rft.pages=1707-1713&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04774&rft_dat=%3Cproquest_cross%3E2001064334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001064334&rft_id=info:pmid/29425440&rfr_iscdi=true