Tailoring Mechanically Tunable Strain Fields in Graphene
There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanic...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-03, Vol.18 (3), p.1707-1713 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1713 |
---|---|
container_issue | 3 |
container_start_page | 1707 |
container_title | Nano letters |
container_volume | 18 |
creator | Goldsche, Matthias Sonntag, Jens Khodkov, Tymofiy Verbiest, Gerard Jan Reichardt, Sven Neumann, Christoph Ouaj, Taoufiq von den Driesch, Nils Buca, Dan Stampfer, Christoph |
description | There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure. |
doi_str_mv | 10.1021/acs.nanolett.7b04774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2001064334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001064334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJy_srHiCpakIoYKLN1dhyaynWKnQz996Rqy8h0Nzzve7qHkHsKUwqMPqGJU4--dbbrprkGkefigoyp5JBmZcku__ZCjMhNjBsAKLmEazJipWBSCBiTYoWNa0Pjv5N3a9boG4PO7ZNV71E7m3x2ARufzBvrqpgM2yLgbm29vSVXNbpo705zQr7mL6vZa7r8WLzNnpcpCkm7lJu6RsgY5KyWUGRMSp0XYFhdoDSyyvJac6OFzIQprGUGqlIzLDgFnRtJ-YQ8Hnt3of3pbezUtonGOofetn1UDIBCJjgXAyqOqAltjMHWaheaLYa9oqAOztTgTJ2dqZOzIfZwutDrra3-QmdJAwBH4BDftH3ww8P_d_4CmFB60g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001064334</pqid></control><display><type>article</type><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><source>ACS Publications</source><creator>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</creator><creatorcontrib>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</creatorcontrib><description>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04774</identifier><identifier>PMID: 29425440</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1707-1713</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</citedby><cites>FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</cites><orcidid>0000-0002-1712-1234 ; 0000-0003-0169-6110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29425440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Sonntag, Jens</creatorcontrib><creatorcontrib>Khodkov, Tymofiy</creatorcontrib><creatorcontrib>Verbiest, Gerard Jan</creatorcontrib><creatorcontrib>Reichardt, Sven</creatorcontrib><creatorcontrib>Neumann, Christoph</creatorcontrib><creatorcontrib>Ouaj, Taoufiq</creatorcontrib><creatorcontrib>von den Driesch, Nils</creatorcontrib><creatorcontrib>Buca, Dan</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJy_srHiCpakIoYKLN1dhyaynWKnQz996Rqy8h0Nzzve7qHkHsKUwqMPqGJU4--dbbrprkGkefigoyp5JBmZcku__ZCjMhNjBsAKLmEazJipWBSCBiTYoWNa0Pjv5N3a9boG4PO7ZNV71E7m3x2ARufzBvrqpgM2yLgbm29vSVXNbpo705zQr7mL6vZa7r8WLzNnpcpCkm7lJu6RsgY5KyWUGRMSp0XYFhdoDSyyvJac6OFzIQprGUGqlIzLDgFnRtJ-YQ8Hnt3of3pbezUtonGOofetn1UDIBCJjgXAyqOqAltjMHWaheaLYa9oqAOztTgTJ2dqZOzIfZwutDrra3-QmdJAwBH4BDftH3ww8P_d_4CmFB60g</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Goldsche, Matthias</creator><creator>Sonntag, Jens</creator><creator>Khodkov, Tymofiy</creator><creator>Verbiest, Gerard Jan</creator><creator>Reichardt, Sven</creator><creator>Neumann, Christoph</creator><creator>Ouaj, Taoufiq</creator><creator>von den Driesch, Nils</creator><creator>Buca, Dan</creator><creator>Stampfer, Christoph</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-0169-6110</orcidid></search><sort><creationdate>20180314</creationdate><title>Tailoring Mechanically Tunable Strain Fields in Graphene</title><author>Goldsche, Matthias ; Sonntag, Jens ; Khodkov, Tymofiy ; Verbiest, Gerard Jan ; Reichardt, Sven ; Neumann, Christoph ; Ouaj, Taoufiq ; von den Driesch, Nils ; Buca, Dan ; Stampfer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-3cffa062072f5086255b780c2f8a5c5d67fb3cb4564c8ee2c0d9b2a8310b7c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Sonntag, Jens</creatorcontrib><creatorcontrib>Khodkov, Tymofiy</creatorcontrib><creatorcontrib>Verbiest, Gerard Jan</creatorcontrib><creatorcontrib>Reichardt, Sven</creatorcontrib><creatorcontrib>Neumann, Christoph</creatorcontrib><creatorcontrib>Ouaj, Taoufiq</creatorcontrib><creatorcontrib>von den Driesch, Nils</creatorcontrib><creatorcontrib>Buca, Dan</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldsche, Matthias</au><au>Sonntag, Jens</au><au>Khodkov, Tymofiy</au><au>Verbiest, Gerard Jan</au><au>Reichardt, Sven</au><au>Neumann, Christoph</au><au>Ouaj, Taoufiq</au><au>von den Driesch, Nils</au><au>Buca, Dan</au><au>Stampfer, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Mechanically Tunable Strain Fields in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1707</spage><epage>1713</epage><pages>1707-1713</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micromachined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4%/μm. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29425440</pmid><doi>10.1021/acs.nanolett.7b04774</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1712-1234</orcidid><orcidid>https://orcid.org/0000-0003-0169-6110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2018-03, Vol.18 (3), p.1707-1713 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2001064334 |
source | ACS Publications |
title | Tailoring Mechanically Tunable Strain Fields in Graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Mechanically%20Tunable%20Strain%20Fields%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Goldsche,%20Matthias&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1707&rft.epage=1713&rft.pages=1707-1713&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04774&rft_dat=%3Cproquest_cross%3E2001064334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001064334&rft_id=info:pmid/29425440&rfr_iscdi=true |