Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models

Three and four state categorical quantitative structure–activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2007-10, Vol.99 (2), p.532-544
Hauptverfasser: Li, Yi, Pan, Dahua, Liu, Jianzhong, Kern, Petra S., Gerberick, G. Frank, Hopfinger, Anton J., Tseng, Yufeng J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue 2
container_start_page 532
container_title Toxicological sciences
container_volume 99
creator Li, Yi
Pan, Dahua
Liu, Jianzhong
Kern, Petra S.
Gerberick, G. Frank
Hopfinger, Anton J.
Tseng, Yufeng J.
description Three and four state categorical quantitative structure–activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114–128). 4D-fingerprint descriptors derived from the 4D-molecular similarity paradigm are used to generate these models. A training set of 196 and a test set of 22 structurally diverse compounds were used in this study. Logistic regression, and partial least square coupled logistic regression were used to build the models. The three-state QSAR model gives a classification accuracy of 73.4% for the training set and 63.6% for the test set, while the random average value of classification accuracy for any three-state data set is 33.3%. The two-2-state [four categories in total] QSAR model gives a classification accuracy of 83.2% for the training set and 54.6% for the test set, while the random average value of classification accuracy for any two-2-state data set is 25%. An analysis of the skin-sensitization models developed in this study, as well as the two-state QSAR models developed in our previous analysis, suggests that the “moderate” sensitizers may be the main source of limited model accuracy.
doi_str_mv 10.1093/toxsci/kfm185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20010249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/toxsci/kfm185</oup_id><sourcerecordid>20010249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-717e1a1d781497a9023f4f7742c79509c3dad266d0a27e96cd97f772f3daa5c53</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoh9w5Ip8Qr2E-iOJ19yWLf1Q0wLdBSEulus4W7NJHDyO6PaH8ftwNxEcOXk8fuad8bxJ8orgtwQLdhzcPWh7vKlbMsufJPsxWaRYUPF0igs8w3vJAcAPjAkpsHie7BFe8Jwxtp_8Xqhg1s5brRr0eTm_QVeuMg2g2nm03NgOLU0HNtgHFazr0K0CU6Ghj2HpHmvKbdvfoetYhOYAaosWjQKwdRTcFVwZBYM3gD4pHxB9h7KT9NR2a-N7b7uAVnfemHQZ4hhIdRVa_XIpne6lW1sIVqMbs44SsNPbjfcieVarBszL6TxMvpx-WC3O0_Lj2cViXqY6YzSknHBDFKn4jGSCK4Epq7Oa84xqLnIsNKtURYuiwopyIwpdCR6faR3zKtc5O0zejLq9dz8HA0G2FrRpGtUZN4CkcaeYZiKC6Qhq7wC8qWX8Xqv8VhIsH42So1FyNCryryfh4bY11T96ciYCRyPghv6_WlPvuCxz_xdWfiMLznguz799l-_p5fUlKwv5lf0B3livxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20010249</pqid></control><display><type>article</type><title>Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yi ; Pan, Dahua ; Liu, Jianzhong ; Kern, Petra S. ; Gerberick, G. Frank ; Hopfinger, Anton J. ; Tseng, Yufeng J.</creator><creatorcontrib>Li, Yi ; Pan, Dahua ; Liu, Jianzhong ; Kern, Petra S. ; Gerberick, G. Frank ; Hopfinger, Anton J. ; Tseng, Yufeng J.</creatorcontrib><description>Three and four state categorical quantitative structure–activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114–128). 4D-fingerprint descriptors derived from the 4D-molecular similarity paradigm are used to generate these models. A training set of 196 and a test set of 22 structurally diverse compounds were used in this study. Logistic regression, and partial least square coupled logistic regression were used to build the models. The three-state QSAR model gives a classification accuracy of 73.4% for the training set and 63.6% for the test set, while the random average value of classification accuracy for any three-state data set is 33.3%. The two-2-state [four categories in total] QSAR model gives a classification accuracy of 83.2% for the training set and 54.6% for the test set, while the random average value of classification accuracy for any two-2-state data set is 25%. An analysis of the skin-sensitization models developed in this study, as well as the two-state QSAR models developed in our previous analysis, suggests that the “moderate” sensitizers may be the main source of limited model accuracy.</description><identifier>ISSN: 1096-6080</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfm185</identifier><identifier>PMID: 17675333</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>4D-fingerprints ; Animals ; categorical models ; Guinea Pigs ; Logistic Models ; logistic regression ; Lymph Nodes - drug effects ; QSAR ; Quantitative Structure-Activity Relationship ; Skin - drug effects ; skin sensitization ; Toxicity Tests</subject><ispartof>Toxicological sciences, 2007-10, Vol.99 (2), p.532-544</ispartof><rights>The Author 2007. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-717e1a1d781497a9023f4f7742c79509c3dad266d0a27e96cd97f772f3daa5c53</citedby><cites>FETCH-LOGICAL-c432t-717e1a1d781497a9023f4f7742c79509c3dad266d0a27e96cd97f772f3daa5c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1585,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17675333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Pan, Dahua</creatorcontrib><creatorcontrib>Liu, Jianzhong</creatorcontrib><creatorcontrib>Kern, Petra S.</creatorcontrib><creatorcontrib>Gerberick, G. Frank</creatorcontrib><creatorcontrib>Hopfinger, Anton J.</creatorcontrib><creatorcontrib>Tseng, Yufeng J.</creatorcontrib><title>Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>Three and four state categorical quantitative structure–activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114–128). 4D-fingerprint descriptors derived from the 4D-molecular similarity paradigm are used to generate these models. A training set of 196 and a test set of 22 structurally diverse compounds were used in this study. Logistic regression, and partial least square coupled logistic regression were used to build the models. The three-state QSAR model gives a classification accuracy of 73.4% for the training set and 63.6% for the test set, while the random average value of classification accuracy for any three-state data set is 33.3%. The two-2-state [four categories in total] QSAR model gives a classification accuracy of 83.2% for the training set and 54.6% for the test set, while the random average value of classification accuracy for any two-2-state data set is 25%. An analysis of the skin-sensitization models developed in this study, as well as the two-state QSAR models developed in our previous analysis, suggests that the “moderate” sensitizers may be the main source of limited model accuracy.</description><subject>4D-fingerprints</subject><subject>Animals</subject><subject>categorical models</subject><subject>Guinea Pigs</subject><subject>Logistic Models</subject><subject>logistic regression</subject><subject>Lymph Nodes - drug effects</subject><subject>QSAR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Skin - drug effects</subject><subject>skin sensitization</subject><subject>Toxicity Tests</subject><issn>1096-6080</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoh9w5Ip8Qr2E-iOJ19yWLf1Q0wLdBSEulus4W7NJHDyO6PaH8ftwNxEcOXk8fuad8bxJ8orgtwQLdhzcPWh7vKlbMsufJPsxWaRYUPF0igs8w3vJAcAPjAkpsHie7BFe8Jwxtp_8Xqhg1s5brRr0eTm_QVeuMg2g2nm03NgOLU0HNtgHFazr0K0CU6Ghj2HpHmvKbdvfoetYhOYAaosWjQKwdRTcFVwZBYM3gD4pHxB9h7KT9NR2a-N7b7uAVnfemHQZ4hhIdRVa_XIpne6lW1sIVqMbs44SsNPbjfcieVarBszL6TxMvpx-WC3O0_Lj2cViXqY6YzSknHBDFKn4jGSCK4Epq7Oa84xqLnIsNKtURYuiwopyIwpdCR6faR3zKtc5O0zejLq9dz8HA0G2FrRpGtUZN4CkcaeYZiKC6Qhq7wC8qWX8Xqv8VhIsH42So1FyNCryryfh4bY11T96ciYCRyPghv6_WlPvuCxz_xdWfiMLznguz799l-_p5fUlKwv5lf0B3livxg</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Li, Yi</creator><creator>Pan, Dahua</creator><creator>Liu, Jianzhong</creator><creator>Kern, Petra S.</creator><creator>Gerberick, G. Frank</creator><creator>Hopfinger, Anton J.</creator><creator>Tseng, Yufeng J.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>20071001</creationdate><title>Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models</title><author>Li, Yi ; Pan, Dahua ; Liu, Jianzhong ; Kern, Petra S. ; Gerberick, G. Frank ; Hopfinger, Anton J. ; Tseng, Yufeng J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-717e1a1d781497a9023f4f7742c79509c3dad266d0a27e96cd97f772f3daa5c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>4D-fingerprints</topic><topic>Animals</topic><topic>categorical models</topic><topic>Guinea Pigs</topic><topic>Logistic Models</topic><topic>logistic regression</topic><topic>Lymph Nodes - drug effects</topic><topic>QSAR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Skin - drug effects</topic><topic>skin sensitization</topic><topic>Toxicity Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Pan, Dahua</creatorcontrib><creatorcontrib>Liu, Jianzhong</creatorcontrib><creatorcontrib>Kern, Petra S.</creatorcontrib><creatorcontrib>Gerberick, G. Frank</creatorcontrib><creatorcontrib>Hopfinger, Anton J.</creatorcontrib><creatorcontrib>Tseng, Yufeng J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi</au><au>Pan, Dahua</au><au>Liu, Jianzhong</au><au>Kern, Petra S.</au><au>Gerberick, G. Frank</au><au>Hopfinger, Anton J.</au><au>Tseng, Yufeng J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>99</volume><issue>2</issue><spage>532</spage><epage>544</epage><pages>532-544</pages><issn>1096-6080</issn><eissn>1096-0929</eissn><abstract>Three and four state categorical quantitative structure–activity relationship (QSAR) models for skin sensitization have been constructed using data from the murine Local Lymph Node Assay studies. These are the same data we previously used to build two-state (sensitizer, nonsensitizer) QSAR models (Li et al., 2007, Chem. Res. Toxicol. 20, 114–128). 4D-fingerprint descriptors derived from the 4D-molecular similarity paradigm are used to generate these models. A training set of 196 and a test set of 22 structurally diverse compounds were used in this study. Logistic regression, and partial least square coupled logistic regression were used to build the models. The three-state QSAR model gives a classification accuracy of 73.4% for the training set and 63.6% for the test set, while the random average value of classification accuracy for any three-state data set is 33.3%. The two-2-state [four categories in total] QSAR model gives a classification accuracy of 83.2% for the training set and 54.6% for the test set, while the random average value of classification accuracy for any two-2-state data set is 25%. An analysis of the skin-sensitization models developed in this study, as well as the two-state QSAR models developed in our previous analysis, suggests that the “moderate” sensitizers may be the main source of limited model accuracy.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>17675333</pmid><doi>10.1093/toxsci/kfm185</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-6080
ispartof Toxicological sciences, 2007-10, Vol.99 (2), p.532-544
issn 1096-6080
1096-0929
language eng
recordid cdi_proquest_miscellaneous_20010249
source MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 4D-fingerprints
Animals
categorical models
Guinea Pigs
Logistic Models
logistic regression
Lymph Nodes - drug effects
QSAR
Quantitative Structure-Activity Relationship
Skin - drug effects
skin sensitization
Toxicity Tests
title Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorical%20QSAR%20Models%20for%20Skin%20Sensitization%20based%20upon%20Local%20Lymph%20Node%20Assay%20Classification%20Measures%20Part%202:%204D-Fingerprint%20Three-State%20and%20Two-2-State%20Logistic%20Regression%20Models&rft.jtitle=Toxicological%20sciences&rft.au=Li,%20Yi&rft.date=2007-10-01&rft.volume=99&rft.issue=2&rft.spage=532&rft.epage=544&rft.pages=532-544&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfm185&rft_dat=%3Cproquest_cross%3E20010249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20010249&rft_id=info:pmid/17675333&rft_oup_id=10.1093/toxsci/kfm185&rfr_iscdi=true