Pulse dynamics and microbial processes in aridland ecosystems

1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of ecology 2008-05, Vol.96 (3), p.413-420
Hauptverfasser: Collins, Scott L, Sinsabaugh, Robert L, Crenshaw, Chelsea, Green, Laura, Porras-Alfaro, Andrea, Stursova, Martina, Zeglin, Lydia H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 3
container_start_page 413
container_title The Journal of ecology
container_volume 96
creator Collins, Scott L
Sinsabaugh, Robert L
Crenshaw, Chelsea
Green, Laura
Porras-Alfaro, Andrea
Stursova, Martina
Zeglin, Lydia H
description 1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3. The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this 'fungal loop' assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4. We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5. Synthesis. Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our 'fungal loop' N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics.
doi_str_mv 10.1111/j.1365-2745.2008.01362.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20008849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20143479</jstor_id><sourcerecordid>20143479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5632-d55d33ca0baad476668c34210d984281e26a1a560d00e2b1f3de149f7ee53c113</originalsourceid><addsrcrecordid>eNqNUFtL5DAUDuKCo7s_YbEI-tbuyaVp-uCDDF4RdkHnOWSSVFo6rebMoPPvN7EyiE_mJSd8l3znIySjUNB4_nQF5bLMWSXKggGoAuKbFW97ZLYD9skMgLEcRFUdkEPEDgBkVcKMnP_b9Ogztx3MqrWYmcFlcQjjsjV99hxG6xE9Zu2QmdC6PuHejrjFtV_hT_KjMVH_6-M-Ioury8f5TX7_9_p2fnGf21JylruydJxbA0tjnKiklMpywSi4WgmmqGfSUFNKcACeLWnDnaeibirvS24p5UfkbPKNgV42Htd61aL1fYzjxw3quDgoJepIPPlC7MZNGGK2yFE1lVyqSFITKa6JGHyjn0O7MmGrKehUqu506k6n7pK30u-l6rcoPf3wN2hN3wQz2BZ3egZMcRDpi_OJ99r2fvttf313OU9T1P-e9B2ux_DJnwouqrTn8YQ3ZtTmKcQMi4eI8tQDUzXn_wHkq5te</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208916368</pqid></control><display><type>article</type><title>Pulse dynamics and microbial processes in aridland ecosystems</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Collins, Scott L ; Sinsabaugh, Robert L ; Crenshaw, Chelsea ; Green, Laura ; Porras-Alfaro, Andrea ; Stursova, Martina ; Zeglin, Lydia H</creator><creatorcontrib>Collins, Scott L ; Sinsabaugh, Robert L ; Crenshaw, Chelsea ; Green, Laura ; Porras-Alfaro, Andrea ; Stursova, Martina ; Zeglin, Lydia H</creatorcontrib><description>1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3. The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this 'fungal loop' assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4. We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5. Synthesis. Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our 'fungal loop' N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics.</description><identifier>ISSN: 0022-0477</identifier><identifier>EISSN: 1365-2745</identifier><identifier>DOI: 10.1111/j.1365-2745.2008.01362.x</identifier><identifier>CODEN: JECOAB</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Arid soils ; Arid zones ; aridland ecosystems ; Biological and medical sciences ; Carbon ; decomposition ; decoupled systems ; degradation ; Desert soils ; Ecology ; Ecosystem dynamics ; Ecosystem models ; Ecosystems ; Essay Review ; Fundamental and applied biological sciences. Psychology ; fungal loop ; Fungi ; General aspects ; Grassland soils ; net primary production ; Nitrogen ; Plants ; Precipitation ; pulse-dynamics ; soil carbon ; Soil ecology ; soil nitrogen ; Synecology ; Terrestrial ecosystems</subject><ispartof>The Journal of ecology, 2008-05, Vol.96 (3), p.413-420</ispartof><rights>Copyright 2008 British Ecological Society</rights><rights>2008 The Authors. Journal compilation © 2008 British Ecological Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. May 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5632-d55d33ca0baad476668c34210d984281e26a1a560d00e2b1f3de149f7ee53c113</citedby><cites>FETCH-LOGICAL-c5632-d55d33ca0baad476668c34210d984281e26a1a560d00e2b1f3de149f7ee53c113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20143479$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20143479$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20283048$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Scott L</creatorcontrib><creatorcontrib>Sinsabaugh, Robert L</creatorcontrib><creatorcontrib>Crenshaw, Chelsea</creatorcontrib><creatorcontrib>Green, Laura</creatorcontrib><creatorcontrib>Porras-Alfaro, Andrea</creatorcontrib><creatorcontrib>Stursova, Martina</creatorcontrib><creatorcontrib>Zeglin, Lydia H</creatorcontrib><title>Pulse dynamics and microbial processes in aridland ecosystems</title><title>The Journal of ecology</title><description>1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3. The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this 'fungal loop' assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4. We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5. Synthesis. Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our 'fungal loop' N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Arid soils</subject><subject>Arid zones</subject><subject>aridland ecosystems</subject><subject>Biological and medical sciences</subject><subject>Carbon</subject><subject>decomposition</subject><subject>decoupled systems</subject><subject>degradation</subject><subject>Desert soils</subject><subject>Ecology</subject><subject>Ecosystem dynamics</subject><subject>Ecosystem models</subject><subject>Ecosystems</subject><subject>Essay Review</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal loop</subject><subject>Fungi</subject><subject>General aspects</subject><subject>Grassland soils</subject><subject>net primary production</subject><subject>Nitrogen</subject><subject>Plants</subject><subject>Precipitation</subject><subject>pulse-dynamics</subject><subject>soil carbon</subject><subject>Soil ecology</subject><subject>soil nitrogen</subject><subject>Synecology</subject><subject>Terrestrial ecosystems</subject><issn>0022-0477</issn><issn>1365-2745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNUFtL5DAUDuKCo7s_YbEI-tbuyaVp-uCDDF4RdkHnOWSSVFo6rebMoPPvN7EyiE_mJSd8l3znIySjUNB4_nQF5bLMWSXKggGoAuKbFW97ZLYD9skMgLEcRFUdkEPEDgBkVcKMnP_b9Ogztx3MqrWYmcFlcQjjsjV99hxG6xE9Zu2QmdC6PuHejrjFtV_hT_KjMVH_6-M-Ioury8f5TX7_9_p2fnGf21JylruydJxbA0tjnKiklMpywSi4WgmmqGfSUFNKcACeLWnDnaeibirvS24p5UfkbPKNgV42Htd61aL1fYzjxw3quDgoJepIPPlC7MZNGGK2yFE1lVyqSFITKa6JGHyjn0O7MmGrKehUqu506k6n7pK30u-l6rcoPf3wN2hN3wQz2BZ3egZMcRDpi_OJ99r2fvttf313OU9T1P-e9B2ux_DJnwouqrTn8YQ3ZtTmKcQMi4eI8tQDUzXn_wHkq5te</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Collins, Scott L</creator><creator>Sinsabaugh, Robert L</creator><creator>Crenshaw, Chelsea</creator><creator>Green, Laura</creator><creator>Porras-Alfaro, Andrea</creator><creator>Stursova, Martina</creator><creator>Zeglin, Lydia H</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7QL</scope><scope>7T7</scope><scope>7U6</scope></search><sort><creationdate>200805</creationdate><title>Pulse dynamics and microbial processes in aridland ecosystems</title><author>Collins, Scott L ; Sinsabaugh, Robert L ; Crenshaw, Chelsea ; Green, Laura ; Porras-Alfaro, Andrea ; Stursova, Martina ; Zeglin, Lydia H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5632-d55d33ca0baad476668c34210d984281e26a1a560d00e2b1f3de149f7ee53c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Arid soils</topic><topic>Arid zones</topic><topic>aridland ecosystems</topic><topic>Biological and medical sciences</topic><topic>Carbon</topic><topic>decomposition</topic><topic>decoupled systems</topic><topic>degradation</topic><topic>Desert soils</topic><topic>Ecology</topic><topic>Ecosystem dynamics</topic><topic>Ecosystem models</topic><topic>Ecosystems</topic><topic>Essay Review</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal loop</topic><topic>Fungi</topic><topic>General aspects</topic><topic>Grassland soils</topic><topic>net primary production</topic><topic>Nitrogen</topic><topic>Plants</topic><topic>Precipitation</topic><topic>pulse-dynamics</topic><topic>soil carbon</topic><topic>Soil ecology</topic><topic>soil nitrogen</topic><topic>Synecology</topic><topic>Terrestrial ecosystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Scott L</creatorcontrib><creatorcontrib>Sinsabaugh, Robert L</creatorcontrib><creatorcontrib>Crenshaw, Chelsea</creatorcontrib><creatorcontrib>Green, Laura</creatorcontrib><creatorcontrib>Porras-Alfaro, Andrea</creatorcontrib><creatorcontrib>Stursova, Martina</creatorcontrib><creatorcontrib>Zeglin, Lydia H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><jtitle>The Journal of ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Scott L</au><au>Sinsabaugh, Robert L</au><au>Crenshaw, Chelsea</au><au>Green, Laura</au><au>Porras-Alfaro, Andrea</au><au>Stursova, Martina</au><au>Zeglin, Lydia H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse dynamics and microbial processes in aridland ecosystems</atitle><jtitle>The Journal of ecology</jtitle><date>2008-05</date><risdate>2008</risdate><volume>96</volume><issue>3</issue><spage>413</spage><epage>420</epage><pages>413-420</pages><issn>0022-0477</issn><eissn>1365-2745</eissn><coden>JECOAB</coden><abstract>1. Aridland ecosystems cover about one-third of terrestrial environments globally, yet the extent to which models of carbon (C) and nitrogen (N) cycling, developed largely from studies of mesic ecosystems, apply to aridland systems remains unclear. 2. Within aridland ecosystems, C and N dynamics are often described by a pulse-reserve model in which episodic precipitation events stimulate biological activity that generate reserves of biomass, propagules and organic matter that prime the ecosystem to respond rapidly to subsequent precipitation events. 3. The role of microbial C and N processing within the pulse-reserve paradigm has not received much study. We present evidence suggesting that fungi play a critical and underappreciated role in aridland soils, including efficient decomposition of recalcitrant C compounds, N-transformations such as nitrification, and nutrient storage and translocation of C and N between plants and biotic soil crusts. While fungi may perform some of these functions in other ecosystems, this 'fungal loop' assumes particular importance in the N cycle in aridlands because water availability imposes even greater restrictions on bacterial activity and physicochemical processes limit accumulation of soil organic matter (SOM). 4. We incorporate these findings into a Threshold-Delay Nutrient Dynamics (TDND) model for aridland ecosystems in which plant responses to pulsed precipitation events are mediated by a fungal loop that links C and N cycling, net primary production (NPP) and decomposition in aridland soils. 5. Synthesis. Arid ecosystems are highly sensitive to global environmental change including N deposition and altered precipitation patterns; yet, models from mesic ecosystems do not adequately apply to aridland environments. Our 'fungal loop' N cycle model integrates spatial structure with pulse dynamics and extends the pulse-reserve paradigm to include the key role of microbial processes in aridland ecosystem dynamics.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2745.2008.01362.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0477
ispartof The Journal of ecology, 2008-05, Vol.96 (3), p.413-420
issn 0022-0477
1365-2745
language eng
recordid cdi_proquest_miscellaneous_20008849
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Arid soils
Arid zones
aridland ecosystems
Biological and medical sciences
Carbon
decomposition
decoupled systems
degradation
Desert soils
Ecology
Ecosystem dynamics
Ecosystem models
Ecosystems
Essay Review
Fundamental and applied biological sciences. Psychology
fungal loop
Fungi
General aspects
Grassland soils
net primary production
Nitrogen
Plants
Precipitation
pulse-dynamics
soil carbon
Soil ecology
soil nitrogen
Synecology
Terrestrial ecosystems
title Pulse dynamics and microbial processes in aridland ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20dynamics%20and%20microbial%20processes%20in%20aridland%20ecosystems&rft.jtitle=The%20Journal%20of%20ecology&rft.au=Collins,%20Scott%20L&rft.date=2008-05&rft.volume=96&rft.issue=3&rft.spage=413&rft.epage=420&rft.pages=413-420&rft.issn=0022-0477&rft.eissn=1365-2745&rft.coden=JECOAB&rft_id=info:doi/10.1111/j.1365-2745.2008.01362.x&rft_dat=%3Cjstor_proqu%3E20143479%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208916368&rft_id=info:pmid/&rft_jstor_id=20143479&rfr_iscdi=true