Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and a...
Gespeichert in:
Veröffentlicht in: | Studies in mycology 2017-03, Vol.86 (1), p.1-28 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Studies in mycology |
container_volume | 86 |
creator | Teixeira, M.M. Moreno, L.F. Stielow, B.J. Muszewska, A. Hainaut, M. Gonzaga, L. Abouelleil, A. Patané, J.S.L. Priest, M. Souza, R. Young, S. Ferreira, K.S. Zeng, Q. da Cunha, M.M.L. Gladki, A. Barker, B. Vicente, V.A. de Souza, E.M. Almeida, S. Henrissat, B. Vasconcelos, A.T.R. Deng, S. Voglmayr, H. Moussa, T.A.A. Gorbushina, A. Felipe, M.S.S. Cuomo, C.A. de Hoog, G. Sybren |
description | The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophia |
doi_str_mv | 10.1016/j.simyco.2017.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000519380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>wfbi/sim/2017/00000086/00000001/art00002</ingid><els_id>S0166061617300167</els_id><sourcerecordid>2000519380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-ee95c076eebe32e73a4b28b39da88153ae705a28d0fa7436e96112993632aed03</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhiMEYpeFf4BQjrsSLf5IHOeCqKqFRargAicOo4kzaV3SuNhuofx6nG1ZPiTwxZb9zjvv-Mmyp5xNOePqxXoa7OZg3FQwXk0ZnzLG72XnXFdiUld1dT87TzI1YYqrs-xRCGvGykJr-TA7E1oWuijUefbp-tu2d94OyzyuKF_S4DbW5K3dkw82HnLX5U2P5nN-IAwx5Di0uaceY1KE_HK-Qoourg7eYk_heT4Lxo2xIl49zh502Ad6ctovso-vrz_MbyaL92_ezmeLiVGljhOiujSsUkQNSUGVxKIRupF1i1rzUiJVrEShW9ZhVUhFteJc1LVUUiC1TF5kL4--212zodbQED32sPV2g_4ADi38-TLYFSzdHkpZ6lryZHB1NFj9VXYzW8B4x7hmQvNiP2ovT828-7KjEGFjg6G-x4HcLoBg6Zt5LfWYqzhKjXcheOruvDmDkSGs4cgQRoapCySGqezZ7-PcFf2ElgTvjoJELU2EsHY7P6QfBmvga9dYGMGP3GGv1cCTu0gNhABWMgEtdbjrI0T0sPwOQSTDV_8wvHVLGU8Bb5dWp0PKiz6OB_GLASXQe0segrE0GGqtJxOhdfb_U_8AK9HeiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000519380</pqid></control><display><type>article</type><title>Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Teixeira, M.M. ; Moreno, L.F. ; Stielow, B.J. ; Muszewska, A. ; Hainaut, M. ; Gonzaga, L. ; Abouelleil, A. ; Patané, J.S.L. ; Priest, M. ; Souza, R. ; Young, S. ; Ferreira, K.S. ; Zeng, Q. ; da Cunha, M.M.L. ; Gladki, A. ; Barker, B. ; Vicente, V.A. ; de Souza, E.M. ; Almeida, S. ; Henrissat, B. ; Vasconcelos, A.T.R. ; Deng, S. ; Voglmayr, H. ; Moussa, T.A.A. ; Gorbushina, A. ; Felipe, M.S.S. ; Cuomo, C.A. ; de Hoog, G. Sybren</creator><creatorcontrib>Teixeira, M.M. ; Moreno, L.F. ; Stielow, B.J. ; Muszewska, A. ; Hainaut, M. ; Gonzaga, L. ; Abouelleil, A. ; Patané, J.S.L. ; Priest, M. ; Souza, R. ; Young, S. ; Ferreira, K.S. ; Zeng, Q. ; da Cunha, M.M.L. ; Gladki, A. ; Barker, B. ; Vicente, V.A. ; de Souza, E.M. ; Almeida, S. ; Henrissat, B. ; Vasconcelos, A.T.R. ; Deng, S. ; Voglmayr, H. ; Moussa, T.A.A. ; Gorbushina, A. ; Felipe, M.S.S. ; Cuomo, C.A. ; de Hoog, G. Sybren</creatorcontrib><description>The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.</description><identifier>ISSN: 0166-0616</identifier><identifier>EISSN: 1872-9797</identifier><identifier>DOI: 10.1016/j.simyco.2017.01.001</identifier><identifier>PMID: 28348446</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biochemistry, Molecular Biology ; biosynthesis ; Black Yeast ; Capronia ; carboxypeptidases ; Chaetothyriales ; Comparative Genomics ; dihydroxyphenylalanine ; dipeptidases ; DNA ; Ecology ; etiological agents ; Evolution ; genes ; genetic variation ; genome assembly ; Genomics ; Herpotrichiellaceae ; heterokaryon ; Life Sciences ; loci ; melanin ; melanization ; Microbiology and Parasitology ; Mycology ; parasexual cycle ; pathogenesis ; pectin lyase ; Phylogeny ; protein degradation ; Research Paper ; saprophytes ; secondary infection ; transposons ; yeasts</subject><ispartof>Studies in mycology, 2017-03, Vol.86 (1), p.1-28</ispartof><rights>2017 Westerdijk Fungal Biodiversity Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V. 2017 Westerdijk Fungal Biodiversity Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-ee95c076eebe32e73a4b28b39da88153ae705a28d0fa7436e96112993632aed03</citedby><cites>FETCH-LOGICAL-c658t-ee95c076eebe32e73a4b28b39da88153ae705a28d0fa7436e96112993632aed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358931/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358931/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28348446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01802814$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, M.M.</creatorcontrib><creatorcontrib>Moreno, L.F.</creatorcontrib><creatorcontrib>Stielow, B.J.</creatorcontrib><creatorcontrib>Muszewska, A.</creatorcontrib><creatorcontrib>Hainaut, M.</creatorcontrib><creatorcontrib>Gonzaga, L.</creatorcontrib><creatorcontrib>Abouelleil, A.</creatorcontrib><creatorcontrib>Patané, J.S.L.</creatorcontrib><creatorcontrib>Priest, M.</creatorcontrib><creatorcontrib>Souza, R.</creatorcontrib><creatorcontrib>Young, S.</creatorcontrib><creatorcontrib>Ferreira, K.S.</creatorcontrib><creatorcontrib>Zeng, Q.</creatorcontrib><creatorcontrib>da Cunha, M.M.L.</creatorcontrib><creatorcontrib>Gladki, A.</creatorcontrib><creatorcontrib>Barker, B.</creatorcontrib><creatorcontrib>Vicente, V.A.</creatorcontrib><creatorcontrib>de Souza, E.M.</creatorcontrib><creatorcontrib>Almeida, S.</creatorcontrib><creatorcontrib>Henrissat, B.</creatorcontrib><creatorcontrib>Vasconcelos, A.T.R.</creatorcontrib><creatorcontrib>Deng, S.</creatorcontrib><creatorcontrib>Voglmayr, H.</creatorcontrib><creatorcontrib>Moussa, T.A.A.</creatorcontrib><creatorcontrib>Gorbushina, A.</creatorcontrib><creatorcontrib>Felipe, M.S.S.</creatorcontrib><creatorcontrib>Cuomo, C.A.</creatorcontrib><creatorcontrib>de Hoog, G. Sybren</creatorcontrib><title>Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)</title><title>Studies in mycology</title><addtitle>Stud Mycol</addtitle><description>The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.</description><subject>Biochemistry, Molecular Biology</subject><subject>biosynthesis</subject><subject>Black Yeast</subject><subject>Capronia</subject><subject>carboxypeptidases</subject><subject>Chaetothyriales</subject><subject>Comparative Genomics</subject><subject>dihydroxyphenylalanine</subject><subject>dipeptidases</subject><subject>DNA</subject><subject>Ecology</subject><subject>etiological agents</subject><subject>Evolution</subject><subject>genes</subject><subject>genetic variation</subject><subject>genome assembly</subject><subject>Genomics</subject><subject>Herpotrichiellaceae</subject><subject>heterokaryon</subject><subject>Life Sciences</subject><subject>loci</subject><subject>melanin</subject><subject>melanization</subject><subject>Microbiology and Parasitology</subject><subject>Mycology</subject><subject>parasexual cycle</subject><subject>pathogenesis</subject><subject>pectin lyase</subject><subject>Phylogeny</subject><subject>protein degradation</subject><subject>Research Paper</subject><subject>saprophytes</subject><subject>secondary infection</subject><subject>transposons</subject><subject>yeasts</subject><issn>0166-0616</issn><issn>1872-9797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhiMEYpeFf4BQjrsSLf5IHOeCqKqFRargAicOo4kzaV3SuNhuofx6nG1ZPiTwxZb9zjvv-Mmyp5xNOePqxXoa7OZg3FQwXk0ZnzLG72XnXFdiUld1dT87TzI1YYqrs-xRCGvGykJr-TA7E1oWuijUefbp-tu2d94OyzyuKF_S4DbW5K3dkw82HnLX5U2P5nN-IAwx5Di0uaceY1KE_HK-Qoourg7eYk_heT4Lxo2xIl49zh502Ad6ctovso-vrz_MbyaL92_ezmeLiVGljhOiujSsUkQNSUGVxKIRupF1i1rzUiJVrEShW9ZhVUhFteJc1LVUUiC1TF5kL4--212zodbQED32sPV2g_4ADi38-TLYFSzdHkpZ6lryZHB1NFj9VXYzW8B4x7hmQvNiP2ovT828-7KjEGFjg6G-x4HcLoBg6Zt5LfWYqzhKjXcheOruvDmDkSGs4cgQRoapCySGqezZ7-PcFf2ElgTvjoJELU2EsHY7P6QfBmvga9dYGMGP3GGv1cCTu0gNhABWMgEtdbjrI0T0sPwOQSTDV_8wvHVLGU8Bb5dWp0PKiz6OB_GLASXQe0segrE0GGqtJxOhdfb_U_8AK9HeiQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Teixeira, M.M.</creator><creator>Moreno, L.F.</creator><creator>Stielow, B.J.</creator><creator>Muszewska, A.</creator><creator>Hainaut, M.</creator><creator>Gonzaga, L.</creator><creator>Abouelleil, A.</creator><creator>Patané, J.S.L.</creator><creator>Priest, M.</creator><creator>Souza, R.</creator><creator>Young, S.</creator><creator>Ferreira, K.S.</creator><creator>Zeng, Q.</creator><creator>da Cunha, M.M.L.</creator><creator>Gladki, A.</creator><creator>Barker, B.</creator><creator>Vicente, V.A.</creator><creator>de Souza, E.M.</creator><creator>Almeida, S.</creator><creator>Henrissat, B.</creator><creator>Vasconcelos, A.T.R.</creator><creator>Deng, S.</creator><creator>Voglmayr, H.</creator><creator>Moussa, T.A.A.</creator><creator>Gorbushina, A.</creator><creator>Felipe, M.S.S.</creator><creator>Cuomo, C.A.</creator><creator>de Hoog, G. Sybren</creator><general>Elsevier B.V</general><general>Westerdijk Fungal Biodiversity Institute</general><general>Centraalbureau voor Schimmelcultures</general><general>CBS Fungal Biodiversity Centre</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20170301</creationdate><title>Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)</title><author>Teixeira, M.M. ; Moreno, L.F. ; Stielow, B.J. ; Muszewska, A. ; Hainaut, M. ; Gonzaga, L. ; Abouelleil, A. ; Patané, J.S.L. ; Priest, M. ; Souza, R. ; Young, S. ; Ferreira, K.S. ; Zeng, Q. ; da Cunha, M.M.L. ; Gladki, A. ; Barker, B. ; Vicente, V.A. ; de Souza, E.M. ; Almeida, S. ; Henrissat, B. ; Vasconcelos, A.T.R. ; Deng, S. ; Voglmayr, H. ; Moussa, T.A.A. ; Gorbushina, A. ; Felipe, M.S.S. ; Cuomo, C.A. ; de Hoog, G. Sybren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-ee95c076eebe32e73a4b28b39da88153ae705a28d0fa7436e96112993632aed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>biosynthesis</topic><topic>Black Yeast</topic><topic>Capronia</topic><topic>carboxypeptidases</topic><topic>Chaetothyriales</topic><topic>Comparative Genomics</topic><topic>dihydroxyphenylalanine</topic><topic>dipeptidases</topic><topic>DNA</topic><topic>Ecology</topic><topic>etiological agents</topic><topic>Evolution</topic><topic>genes</topic><topic>genetic variation</topic><topic>genome assembly</topic><topic>Genomics</topic><topic>Herpotrichiellaceae</topic><topic>heterokaryon</topic><topic>Life Sciences</topic><topic>loci</topic><topic>melanin</topic><topic>melanization</topic><topic>Microbiology and Parasitology</topic><topic>Mycology</topic><topic>parasexual cycle</topic><topic>pathogenesis</topic><topic>pectin lyase</topic><topic>Phylogeny</topic><topic>protein degradation</topic><topic>Research Paper</topic><topic>saprophytes</topic><topic>secondary infection</topic><topic>transposons</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, M.M.</creatorcontrib><creatorcontrib>Moreno, L.F.</creatorcontrib><creatorcontrib>Stielow, B.J.</creatorcontrib><creatorcontrib>Muszewska, A.</creatorcontrib><creatorcontrib>Hainaut, M.</creatorcontrib><creatorcontrib>Gonzaga, L.</creatorcontrib><creatorcontrib>Abouelleil, A.</creatorcontrib><creatorcontrib>Patané, J.S.L.</creatorcontrib><creatorcontrib>Priest, M.</creatorcontrib><creatorcontrib>Souza, R.</creatorcontrib><creatorcontrib>Young, S.</creatorcontrib><creatorcontrib>Ferreira, K.S.</creatorcontrib><creatorcontrib>Zeng, Q.</creatorcontrib><creatorcontrib>da Cunha, M.M.L.</creatorcontrib><creatorcontrib>Gladki, A.</creatorcontrib><creatorcontrib>Barker, B.</creatorcontrib><creatorcontrib>Vicente, V.A.</creatorcontrib><creatorcontrib>de Souza, E.M.</creatorcontrib><creatorcontrib>Almeida, S.</creatorcontrib><creatorcontrib>Henrissat, B.</creatorcontrib><creatorcontrib>Vasconcelos, A.T.R.</creatorcontrib><creatorcontrib>Deng, S.</creatorcontrib><creatorcontrib>Voglmayr, H.</creatorcontrib><creatorcontrib>Moussa, T.A.A.</creatorcontrib><creatorcontrib>Gorbushina, A.</creatorcontrib><creatorcontrib>Felipe, M.S.S.</creatorcontrib><creatorcontrib>Cuomo, C.A.</creatorcontrib><creatorcontrib>de Hoog, G. Sybren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Studies in mycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, M.M.</au><au>Moreno, L.F.</au><au>Stielow, B.J.</au><au>Muszewska, A.</au><au>Hainaut, M.</au><au>Gonzaga, L.</au><au>Abouelleil, A.</au><au>Patané, J.S.L.</au><au>Priest, M.</au><au>Souza, R.</au><au>Young, S.</au><au>Ferreira, K.S.</au><au>Zeng, Q.</au><au>da Cunha, M.M.L.</au><au>Gladki, A.</au><au>Barker, B.</au><au>Vicente, V.A.</au><au>de Souza, E.M.</au><au>Almeida, S.</au><au>Henrissat, B.</au><au>Vasconcelos, A.T.R.</au><au>Deng, S.</au><au>Voglmayr, H.</au><au>Moussa, T.A.A.</au><au>Gorbushina, A.</au><au>Felipe, M.S.S.</au><au>Cuomo, C.A.</au><au>de Hoog, G. Sybren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota)</atitle><jtitle>Studies in mycology</jtitle><addtitle>Stud Mycol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>86</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0166-0616</issn><eissn>1872-9797</eissn><abstract>The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28348446</pmid><doi>10.1016/j.simyco.2017.01.001</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-0616 |
ispartof | Studies in mycology, 2017-03, Vol.86 (1), p.1-28 |
issn | 0166-0616 1872-9797 |
language | eng |
recordid | cdi_proquest_miscellaneous_2000519380 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Biochemistry, Molecular Biology biosynthesis Black Yeast Capronia carboxypeptidases Chaetothyriales Comparative Genomics dihydroxyphenylalanine dipeptidases DNA Ecology etiological agents Evolution genes genetic variation genome assembly Genomics Herpotrichiellaceae heterokaryon Life Sciences loci melanin melanization Microbiology and Parasitology Mycology parasexual cycle pathogenesis pectin lyase Phylogeny protein degradation Research Paper saprophytes secondary infection transposons yeasts |
title | Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20genomic%20diversity%20of%20black%20yeasts%20and%20relatives%20(Chaetothyriales,%20Ascomycota)&rft.jtitle=Studies%20in%20mycology&rft.au=Teixeira,%20M.M.&rft.date=2017-03-01&rft.volume=86&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0166-0616&rft.eissn=1872-9797&rft_id=info:doi/10.1016/j.simyco.2017.01.001&rft_dat=%3Cproquest_pubme%3E2000519380%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000519380&rft_id=info:pmid/28348446&rft_ingid=wfbi/sim/2017/00000086/00000001/art00002&rft_els_id=S0166061617300167&rfr_iscdi=true |