Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase

Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology 2017-06, Vol.53 (3), p.642-651
Hauptverfasser: Carvalho, Rodrigo Tomazetto, Salgado, Leonardo Tavares, Amado Filho, Gilberto Menezes, Leal, Rachel Nunes, Werckmann, Jacques, Rossi, André Linhares, Campos, Andrea Porto Carreiro, Karez, Cláudia Santiago, Farina, Marcos, Amsler, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 3
container_start_page 642
container_title Journal of phycology
container_volume 53
creator Carvalho, Rodrigo Tomazetto
Salgado, Leonardo Tavares
Amado Filho, Gilberto Menezes
Leal, Rachel Nunes
Werckmann, Jacques
Rossi, André Linhares
Campos, Andrea Porto Carreiro
Karez, Cláudia Santiago
Farina, Marcos
Amsler, C.
description Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith‐forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix‐mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico‐chemical interactions between rhodoliths and the environment in coralline reefs.
doi_str_mv 10.1111/jpy.12526
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000500703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874445799</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4096-4a581b7b7125e1b8515564eb491945f953e5ee397f83886aea3c30ead41ad6ac3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhwAsgS1xaqWntxE4cbm1VWtBKIAQHTtHEmRCvkjjYjpbtK_GSeJuFAxLCB49kffOP5_8JecnZOY_nYjPtznkq0_wRWXGZlolSvHhMVoylaZLlIj8iz7zfMMaKXPKn5ChVqVRSiRX5eWXsYEZ00Jt7CMaO1LZUQ6_NPMTqajtCQGpGGjqkGvuebiFekVqb0NnQwTDu27QzfoIQu07uYIpyjYEe_Rn91NnGTt0uwOkbqq1z2C-DagxbxEXYum8wGk0HCM78oDA2D8-Hr9GpA4_PyZMWeo8vDvWYfHl78_n6Lll_uH13fblOQLAyTwRIxeuiLqIlyGsluZS5wFqUvBSyLWWGEjEri1ZlSuWAkOmMITSCQ5ODzo7JyaI7Oft9Rh-qwfj95jCinX2VRiNl9JJl_0W5KoQQsijLiL7-C93Y2Y1xkYqXTKhCphmP1OlCaWe9d9hWkzMDuF3FWbUPu4phVw9hR_bVQXGuB2z-kL_TjcDFAmxNj7t_K1XvP35dJH8BWo21lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904875231</pqid></control><display><type>article</type><title>Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carvalho, Rodrigo Tomazetto ; Salgado, Leonardo Tavares ; Amado Filho, Gilberto Menezes ; Leal, Rachel Nunes ; Werckmann, Jacques ; Rossi, André Linhares ; Campos, Andrea Porto Carreiro ; Karez, Cláudia Santiago ; Farina, Marcos ; Amsler, C.</creator><creatorcontrib>Carvalho, Rodrigo Tomazetto ; Salgado, Leonardo Tavares ; Amado Filho, Gilberto Menezes ; Leal, Rachel Nunes ; Werckmann, Jacques ; Rossi, André Linhares ; Campos, Andrea Porto Carreiro ; Karez, Cláudia Santiago ; Farina, Marcos ; Amsler, C.</creatorcontrib><description>Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith‐forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix‐mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico‐chemical interactions between rhodoliths and the environment in coralline reefs.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.12526</identifier><identifier>PMID: 28258584</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algae ; biogenic calcium carbonate ; biomineralization ; Brazil ; calcareous algae ; Calcification, Physiologic ; Calcium ; Calcium carbonate ; Calcium Carbonate - metabolism ; Calcium carbonates ; Carbonates ; Cell Wall - physiology ; Cell Wall - ultrastructure ; Cell walls ; Chemical interactions ; Control ; Coral reefs ; Correlation ; Crystallites ; Crystallography ; Crystals ; Forming ; Growth ; Interactions ; Lithothamnion crispatum ; Lithothamnium ; Mathematical models ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Mineral composition ; mineral content ; Mineralization ; Modulation ; Nanostructure ; Nucleation ; organic matrix ; Organizations ; polysaccharides ; reefs ; Rhodophyta - physiology ; Sectioning ; Shape ; Ultrastructure ; Walls</subject><ispartof>Journal of phycology, 2017-06, Vol.53 (3), p.642-651</ispartof><rights>2017 Phycological Society of America</rights><rights>2017 Phycological Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4096-4a581b7b7125e1b8515564eb491945f953e5ee397f83886aea3c30ead41ad6ac3</citedby><cites>FETCH-LOGICAL-a4096-4a581b7b7125e1b8515564eb491945f953e5ee397f83886aea3c30ead41ad6ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.12526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.12526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28258584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Rodrigo Tomazetto</creatorcontrib><creatorcontrib>Salgado, Leonardo Tavares</creatorcontrib><creatorcontrib>Amado Filho, Gilberto Menezes</creatorcontrib><creatorcontrib>Leal, Rachel Nunes</creatorcontrib><creatorcontrib>Werckmann, Jacques</creatorcontrib><creatorcontrib>Rossi, André Linhares</creatorcontrib><creatorcontrib>Campos, Andrea Porto Carreiro</creatorcontrib><creatorcontrib>Karez, Cláudia Santiago</creatorcontrib><creatorcontrib>Farina, Marcos</creatorcontrib><creatorcontrib>Amsler, C.</creatorcontrib><title>Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase</title><title>Journal of phycology</title><addtitle>J Phycol</addtitle><description>Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith‐forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix‐mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico‐chemical interactions between rhodoliths and the environment in coralline reefs.</description><subject>Algae</subject><subject>biogenic calcium carbonate</subject><subject>biomineralization</subject><subject>Brazil</subject><subject>calcareous algae</subject><subject>Calcification, Physiologic</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium Carbonate - metabolism</subject><subject>Calcium carbonates</subject><subject>Carbonates</subject><subject>Cell Wall - physiology</subject><subject>Cell Wall - ultrastructure</subject><subject>Cell walls</subject><subject>Chemical interactions</subject><subject>Control</subject><subject>Coral reefs</subject><subject>Correlation</subject><subject>Crystallites</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Forming</subject><subject>Growth</subject><subject>Interactions</subject><subject>Lithothamnion crispatum</subject><subject>Lithothamnium</subject><subject>Mathematical models</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mineral composition</subject><subject>mineral content</subject><subject>Mineralization</subject><subject>Modulation</subject><subject>Nanostructure</subject><subject>Nucleation</subject><subject>organic matrix</subject><subject>Organizations</subject><subject>polysaccharides</subject><subject>reefs</subject><subject>Rhodophyta - physiology</subject><subject>Sectioning</subject><subject>Shape</subject><subject>Ultrastructure</subject><subject>Walls</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhwAsgS1xaqWntxE4cbm1VWtBKIAQHTtHEmRCvkjjYjpbtK_GSeJuFAxLCB49kffOP5_8JecnZOY_nYjPtznkq0_wRWXGZlolSvHhMVoylaZLlIj8iz7zfMMaKXPKn5ChVqVRSiRX5eWXsYEZ00Jt7CMaO1LZUQ6_NPMTqajtCQGpGGjqkGvuebiFekVqb0NnQwTDu27QzfoIQu07uYIpyjYEe_Rn91NnGTt0uwOkbqq1z2C-DagxbxEXYum8wGk0HCM78oDA2D8-Hr9GpA4_PyZMWeo8vDvWYfHl78_n6Lll_uH13fblOQLAyTwRIxeuiLqIlyGsluZS5wFqUvBSyLWWGEjEri1ZlSuWAkOmMITSCQ5ODzo7JyaI7Oft9Rh-qwfj95jCinX2VRiNl9JJl_0W5KoQQsijLiL7-C93Y2Y1xkYqXTKhCphmP1OlCaWe9d9hWkzMDuF3FWbUPu4phVw9hR_bVQXGuB2z-kL_TjcDFAmxNj7t_K1XvP35dJH8BWo21lA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Carvalho, Rodrigo Tomazetto</creator><creator>Salgado, Leonardo Tavares</creator><creator>Amado Filho, Gilberto Menezes</creator><creator>Leal, Rachel Nunes</creator><creator>Werckmann, Jacques</creator><creator>Rossi, André Linhares</creator><creator>Campos, Andrea Porto Carreiro</creator><creator>Karez, Cláudia Santiago</creator><creator>Farina, Marcos</creator><creator>Amsler, C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201706</creationdate><title>Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase</title><author>Carvalho, Rodrigo Tomazetto ; Salgado, Leonardo Tavares ; Amado Filho, Gilberto Menezes ; Leal, Rachel Nunes ; Werckmann, Jacques ; Rossi, André Linhares ; Campos, Andrea Porto Carreiro ; Karez, Cláudia Santiago ; Farina, Marcos ; Amsler, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4096-4a581b7b7125e1b8515564eb491945f953e5ee397f83886aea3c30ead41ad6ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>biogenic calcium carbonate</topic><topic>biomineralization</topic><topic>Brazil</topic><topic>calcareous algae</topic><topic>Calcification, Physiologic</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium Carbonate - metabolism</topic><topic>Calcium carbonates</topic><topic>Carbonates</topic><topic>Cell Wall - physiology</topic><topic>Cell Wall - ultrastructure</topic><topic>Cell walls</topic><topic>Chemical interactions</topic><topic>Control</topic><topic>Coral reefs</topic><topic>Correlation</topic><topic>Crystallites</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Forming</topic><topic>Growth</topic><topic>Interactions</topic><topic>Lithothamnion crispatum</topic><topic>Lithothamnium</topic><topic>Mathematical models</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mineral composition</topic><topic>mineral content</topic><topic>Mineralization</topic><topic>Modulation</topic><topic>Nanostructure</topic><topic>Nucleation</topic><topic>organic matrix</topic><topic>Organizations</topic><topic>polysaccharides</topic><topic>reefs</topic><topic>Rhodophyta - physiology</topic><topic>Sectioning</topic><topic>Shape</topic><topic>Ultrastructure</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Rodrigo Tomazetto</creatorcontrib><creatorcontrib>Salgado, Leonardo Tavares</creatorcontrib><creatorcontrib>Amado Filho, Gilberto Menezes</creatorcontrib><creatorcontrib>Leal, Rachel Nunes</creatorcontrib><creatorcontrib>Werckmann, Jacques</creatorcontrib><creatorcontrib>Rossi, André Linhares</creatorcontrib><creatorcontrib>Campos, Andrea Porto Carreiro</creatorcontrib><creatorcontrib>Karez, Cláudia Santiago</creatorcontrib><creatorcontrib>Farina, Marcos</creatorcontrib><creatorcontrib>Amsler, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Rodrigo Tomazetto</au><au>Salgado, Leonardo Tavares</au><au>Amado Filho, Gilberto Menezes</au><au>Leal, Rachel Nunes</au><au>Werckmann, Jacques</au><au>Rossi, André Linhares</au><au>Campos, Andrea Porto Carreiro</au><au>Karez, Cláudia Santiago</au><au>Farina, Marcos</au><au>Amsler, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase</atitle><jtitle>Journal of phycology</jtitle><addtitle>J Phycol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>642</spage><epage>651</epage><pages>642-651</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith‐forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix‐mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico‐chemical interactions between rhodoliths and the environment in coralline reefs.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28258584</pmid><doi>10.1111/jpy.12526</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3646
ispartof Journal of phycology, 2017-06, Vol.53 (3), p.642-651
issn 0022-3646
1529-8817
language eng
recordid cdi_proquest_miscellaneous_2000500703
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algae
biogenic calcium carbonate
biomineralization
Brazil
calcareous algae
Calcification, Physiologic
Calcium
Calcium carbonate
Calcium Carbonate - metabolism
Calcium carbonates
Carbonates
Cell Wall - physiology
Cell Wall - ultrastructure
Cell walls
Chemical interactions
Control
Coral reefs
Correlation
Crystallites
Crystallography
Crystals
Forming
Growth
Interactions
Lithothamnion crispatum
Lithothamnium
Mathematical models
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Mineral composition
mineral content
Mineralization
Modulation
Nanostructure
Nucleation
organic matrix
Organizations
polysaccharides
reefs
Rhodophyta - physiology
Sectioning
Shape
Ultrastructure
Walls
title Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomineralization%20of%20calcium%20carbonate%20in%20the%20cell%20wall%20of%20Lithothamnion%20crispatum%20(Hapalidiales,%20Rhodophyta):%20correlation%20between%20the%20organic%20matrix%20and%20the%20mineral%20phase&rft.jtitle=Journal%20of%20phycology&rft.au=Carvalho,%20Rodrigo%20Tomazetto&rft.date=2017-06&rft.volume=53&rft.issue=3&rft.spage=642&rft.epage=651&rft.pages=642-651&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.12526&rft_dat=%3Cproquest_cross%3E1874445799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904875231&rft_id=info:pmid/28258584&rfr_iscdi=true