Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR

Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2008-05, Vol.79 (1), p.69-75
Hauptverfasser: Kim, Moon-Soo, Lei, Xin Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 69
container_title Applied microbiology and biotechnology
container_volume 79
creator Kim, Moon-Soo
Lei, Xin Gen
description Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60-80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6-7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.
doi_str_mv 10.1007/s00253-008-1412-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20004196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896328061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-2498417863256b86f6397abfe2f0a7e41970f1419ccf6e113d8ea011c116ed5d3</originalsourceid><addsrcrecordid>eNp9kMFuEzEURS0EomnhA9iAhQQ7w3u2x_YsoygUpKpFQNeWx7GTqSYzgz1Z5O9xNBGVuujKkn3ue9eHkHcIXxBAf80AvBIMwDCUyJl-QRYoBWegUL4kC0BdMV3V5oJc5vwAgNwo9ZpcoBESpJQLcrvud673bb-l0y6k_ZAn17RdOx3pEOk6-3LZ-l3rqB-6lo674-RyoMtxXHLaHGlIaUhsTEMf6M_VrzfkVXRdDm_P5xW5_7b-s_rObu6uf6yWN8xXHCbGZW0kaqMEr1RjVFSi1q6JgUdwOkisNcTypdr7qAKi2JjgANEjqrCpNuKKfJ7nls1_DyFPdt9mH7rO9WE4ZMsBoMRVAT8-AR-GQ-pLN8t5XRllKlkgnCGfhpxTiHZM7d6lo0WwJ9N2Nm2LaXsybXXJvD8PPjT7sHlMnNUW4NMZcNm7LqaT5vyf48ANmOrUkM9cLk_9NqTHhs9t_zCHohus26Yy-P43BxSFMVpqI_4B_MqcuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229586854</pqid></control><display><type>article</type><title>Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kim, Moon-Soo ; Lei, Xin Gen</creator><creatorcontrib>Kim, Moon-Soo ; Lei, Xin Gen</creatorcontrib><description>Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60-80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6-7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-008-1412-7</identifier><identifier>PMID: 18340444</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>6-Phytase - genetics ; 6-Phytase - metabolism ; Acid Phosphatase - genetics ; Acid Phosphatase - metabolism ; Animal sciences ; Bacteria ; Biological and medical sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Calorimetry, Differential Scanning ; Catalysis ; Directed Molecular Evolution ; E coli ; Efficiency ; Enzyme ; Enzyme Stability ; Enzymes ; Error-prone PCR ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen-Ion Concentration ; Inactivation ; Kinetics ; Life Sciences ; Melting temperature ; Methods. Procedures. Technologies ; Microbial Genetics and Genomics ; Microbiology ; Models, Molecular ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutagenesis ; Phosphatase ; Phosphorus ; Phytase ; Pichia pastoris ; Polymerase Chain Reaction ; Protein Engineering ; Protein Structure, Secondary ; Proteins ; Saccharomyces cerevisiae ; Studies ; Temperature ; thermal stability ; Transition Temperature ; Yeast ; Zoology</subject><ispartof>Applied microbiology and biotechnology, 2008-05, Vol.79 (1), p.69-75</ispartof><rights>Springer-Verlag 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-2498417863256b86f6397abfe2f0a7e41970f1419ccf6e113d8ea011c116ed5d3</citedby><cites>FETCH-LOGICAL-c520t-2498417863256b86f6397abfe2f0a7e41970f1419ccf6e113d8ea011c116ed5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-008-1412-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-008-1412-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20280856$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18340444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Moon-Soo</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><title>Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60-80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6-7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.</description><subject>6-Phytase - genetics</subject><subject>6-Phytase - metabolism</subject><subject>Acid Phosphatase - genetics</subject><subject>Acid Phosphatase - metabolism</subject><subject>Animal sciences</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Calorimetry, Differential Scanning</subject><subject>Catalysis</subject><subject>Directed Molecular Evolution</subject><subject>E coli</subject><subject>Efficiency</subject><subject>Enzyme</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Error-prone PCR</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inactivation</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Melting temperature</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutagenesis</subject><subject>Phosphatase</subject><subject>Phosphorus</subject><subject>Phytase</subject><subject>Pichia pastoris</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Engineering</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Studies</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>Transition Temperature</subject><subject>Yeast</subject><subject>Zoology</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFuEzEURS0EomnhA9iAhQQ7w3u2x_YsoygUpKpFQNeWx7GTqSYzgz1Z5O9xNBGVuujKkn3ue9eHkHcIXxBAf80AvBIMwDCUyJl-QRYoBWegUL4kC0BdMV3V5oJc5vwAgNwo9ZpcoBESpJQLcrvud673bb-l0y6k_ZAn17RdOx3pEOk6-3LZ-l3rqB-6lo674-RyoMtxXHLaHGlIaUhsTEMf6M_VrzfkVXRdDm_P5xW5_7b-s_rObu6uf6yWN8xXHCbGZW0kaqMEr1RjVFSi1q6JgUdwOkisNcTypdr7qAKi2JjgANEjqrCpNuKKfJ7nls1_DyFPdt9mH7rO9WE4ZMsBoMRVAT8-AR-GQ-pLN8t5XRllKlkgnCGfhpxTiHZM7d6lo0WwJ9N2Nm2LaXsybXXJvD8PPjT7sHlMnNUW4NMZcNm7LqaT5vyf48ANmOrUkM9cLk_9NqTHhs9t_zCHohus26Yy-P43BxSFMVpqI_4B_MqcuQ</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Kim, Moon-Soo</creator><creator>Lei, Xin Gen</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20080501</creationdate><title>Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR</title><author>Kim, Moon-Soo ; Lei, Xin Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-2498417863256b86f6397abfe2f0a7e41970f1419ccf6e113d8ea011c116ed5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>6-Phytase - genetics</topic><topic>6-Phytase - metabolism</topic><topic>Acid Phosphatase - genetics</topic><topic>Acid Phosphatase - metabolism</topic><topic>Animal sciences</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Calorimetry, Differential Scanning</topic><topic>Catalysis</topic><topic>Directed Molecular Evolution</topic><topic>E coli</topic><topic>Efficiency</topic><topic>Enzyme</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Error-prone PCR</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inactivation</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Melting temperature</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutagenesis</topic><topic>Phosphatase</topic><topic>Phosphorus</topic><topic>Phytase</topic><topic>Pichia pastoris</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Engineering</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Studies</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>Transition Temperature</topic><topic>Yeast</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Moon-Soo</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Moon-Soo</au><au>Lei, Xin Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>79</volume><issue>1</issue><spage>69</spage><epage>75</epage><pages>69-75</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60-80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6-7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18340444</pmid><doi>10.1007/s00253-008-1412-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2008-05, Vol.79 (1), p.69-75
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_20004196
source MEDLINE; SpringerLink Journals
subjects 6-Phytase - genetics
6-Phytase - metabolism
Acid Phosphatase - genetics
Acid Phosphatase - metabolism
Animal sciences
Bacteria
Biological and medical sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Calorimetry, Differential Scanning
Catalysis
Directed Molecular Evolution
E coli
Efficiency
Enzyme
Enzyme Stability
Enzymes
Error-prone PCR
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genetic engineering
Hydrogen Bonding
Hydrogen bonds
Hydrogen-Ion Concentration
Inactivation
Kinetics
Life Sciences
Melting temperature
Methods. Procedures. Technologies
Microbial Genetics and Genomics
Microbiology
Models, Molecular
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Mutagenesis
Phosphatase
Phosphorus
Phytase
Pichia pastoris
Polymerase Chain Reaction
Protein Engineering
Protein Structure, Secondary
Proteins
Saccharomyces cerevisiae
Studies
Temperature
thermal stability
Transition Temperature
Yeast
Zoology
title Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20thermostability%20of%20Escherichia%20coli%20phytase%20AppA2%20by%20error-prone%20PCR&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kim,%20Moon-Soo&rft.date=2008-05-01&rft.volume=79&rft.issue=1&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-008-1412-7&rft_dat=%3Cproquest_cross%3E1896328061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229586854&rft_id=info:pmid/18340444&rfr_iscdi=true