Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages

Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2016-10, Vol.167 (2), p.457-470.e13
Hauptverfasser: Mills, Evanna L., Kelly, Beth, Logan, Angela, Costa, Ana S.H., Varma, Mukund, Bryant, Clare E., Tourlomousis, Panagiotis, Däbritz, J. Henry M., Gottlieb, Eyal, Latorre, Isabel, Corr, Sinéad C., McManus, Gavin, Ryan, Dylan, Jacobs, Howard T., Szibor, Marten, Xavier, Ramnik J., Braun, Thomas, Frezza, Christian, Murphy, Michael P., O’Neill, Luke A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470.e13
container_issue 2
container_start_page 457
container_title Cell
container_volume 167
creator Mills, Evanna L.
Kelly, Beth
Logan, Angela
Costa, Ana S.H.
Varma, Mukund
Bryant, Clare E.
Tourlomousis, Panagiotis
Däbritz, J. Henry M.
Gottlieb, Eyal
Latorre, Isabel
Corr, Sinéad C.
McManus, Gavin
Ryan, Dylan
Jacobs, Howard T.
Szibor, Marten
Xavier, Ramnik J.
Braun, Thomas
Frezza, Christian
Murphy, Michael P.
O’Neill, Luke A.
description Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. [Display omitted] •LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.
doi_str_mv 10.1016/j.cell.2016.08.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000413375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741631162X</els_id><sourcerecordid>2000413375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaCZpX6CLomU3dvVjWRJ0U5K0CWQoJOlaaOTrGQ225UpyYN6-GibtsllcdBHfOXDPQegjJTUltP2yrx0MQ83KXhNVk7Z5g1aUaFk1VLK3aEWIZpVqZXOOLlLaE0KUEOIdOmeybWWr5ArtHhfn_GQz4GvYHboYtjDZBPhxmecQc8JryHYTBu_wA8xLnEPy0xaHHq99Dm4Xpi56i3PA19E_A76b-sGOo80hHvDauhjmnd1Ceo_Oejsk-PDyXqJf32-erm6r-58_7q6-3VdONCpXsGENk73iSlstNGWWCM7LuJ4TrTl3lgnRdgxa0HzjrGblq2ddU-RSWn6JPp985xh-L5CyGX065mQnCEsyrKTQUM6leBWliguuBZGkoOyElntSitCbOfrRxoOhxBzLMHtzVJpjGYYoU8oook8v_stmhO6f5G_6Bfh6AqAE8uwhmuQ8TA46H8Fl0wX_P_8_SfCbjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835395070</pqid></control><display><type>article</type><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</creator><creatorcontrib>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</creatorcontrib><description>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. [Display omitted] •LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2016.08.064</identifier><identifier>PMID: 27667687</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Animals ; Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology ; Citric Acid Cycle ; gene expression ; Glycolysis ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; immunometabolism ; Inflammation - genetics ; Inflammation - immunology ; innate immunity ; Interleukin-10 - metabolism ; lipopolysaccharides ; Lipopolysaccharides - immunology ; macrophage ; Macrophage Activation ; macrophages ; Macrophages - immunology ; Macrophages - metabolism ; Malonates - pharmacology ; membrane potential ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; mitochondria ; Mitochondria - drug effects ; Mitochondria - enzymology ; mitochondrial membrane ; Mitochondrial Proteins - metabolism ; oxidation ; Oxidation-Reduction - drug effects ; oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Oxidoreductases - metabolism ; phenotype ; Plant Proteins - metabolism ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; reverse electron transport ; rotenone ; sequence analysis ; Sequence Analysis, RNA ; succinate ; succinate dehydrogenase ; succinate dehydrogenase (quinone) ; Succinate Dehydrogenase - genetics ; Succinate Dehydrogenase - metabolism ; succinic acid ; Succinic Acid - metabolism ; toll-like receptors ; Transcriptome</subject><ispartof>Cell, 2016-10, Vol.167 (2), p.457-470.e13</ispartof><rights>2016</rights><rights>Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</citedby><cites>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2016.08.064$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27667687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Varma, Mukund</creatorcontrib><creatorcontrib>Bryant, Clare E.</creatorcontrib><creatorcontrib>Tourlomousis, Panagiotis</creatorcontrib><creatorcontrib>Däbritz, J. Henry M.</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Latorre, Isabel</creatorcontrib><creatorcontrib>Corr, Sinéad C.</creatorcontrib><creatorcontrib>McManus, Gavin</creatorcontrib><creatorcontrib>Ryan, Dylan</creatorcontrib><creatorcontrib>Jacobs, Howard T.</creatorcontrib><creatorcontrib>Szibor, Marten</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><title>Cell</title><addtitle>Cell</addtitle><description>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. [Display omitted] •LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</description><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</subject><subject>Citric Acid Cycle</subject><subject>gene expression</subject><subject>Glycolysis</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>immunometabolism</subject><subject>Inflammation - genetics</subject><subject>Inflammation - immunology</subject><subject>innate immunity</subject><subject>Interleukin-10 - metabolism</subject><subject>lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>macrophage</subject><subject>Macrophage Activation</subject><subject>macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Malonates - pharmacology</subject><subject>membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>mitochondrial membrane</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidoreductases - metabolism</subject><subject>phenotype</subject><subject>Plant Proteins - metabolism</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>reverse electron transport</subject><subject>rotenone</subject><subject>sequence analysis</subject><subject>Sequence Analysis, RNA</subject><subject>succinate</subject><subject>succinate dehydrogenase</subject><subject>succinate dehydrogenase (quinone)</subject><subject>Succinate Dehydrogenase - genetics</subject><subject>Succinate Dehydrogenase - metabolism</subject><subject>succinic acid</subject><subject>Succinic Acid - metabolism</subject><subject>toll-like receptors</subject><subject>Transcriptome</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1q3DAUhUVpaCZpX6CLomU3dvVjWRJ0U5K0CWQoJOlaaOTrGQ225UpyYN6-GibtsllcdBHfOXDPQegjJTUltP2yrx0MQ83KXhNVk7Z5g1aUaFk1VLK3aEWIZpVqZXOOLlLaE0KUEOIdOmeybWWr5ArtHhfn_GQz4GvYHboYtjDZBPhxmecQc8JryHYTBu_wA8xLnEPy0xaHHq99Dm4Xpi56i3PA19E_A76b-sGOo80hHvDauhjmnd1Ceo_Oejsk-PDyXqJf32-erm6r-58_7q6-3VdONCpXsGENk73iSlstNGWWCM7LuJ4TrTl3lgnRdgxa0HzjrGblq2ddU-RSWn6JPp985xh-L5CyGX065mQnCEsyrKTQUM6leBWliguuBZGkoOyElntSitCbOfrRxoOhxBzLMHtzVJpjGYYoU8oook8v_stmhO6f5G_6Bfh6AqAE8uwhmuQ8TA46H8Fl0wX_P_8_SfCbjg</recordid><startdate>20161006</startdate><enddate>20161006</enddate><creator>Mills, Evanna L.</creator><creator>Kelly, Beth</creator><creator>Logan, Angela</creator><creator>Costa, Ana S.H.</creator><creator>Varma, Mukund</creator><creator>Bryant, Clare E.</creator><creator>Tourlomousis, Panagiotis</creator><creator>Däbritz, J. Henry M.</creator><creator>Gottlieb, Eyal</creator><creator>Latorre, Isabel</creator><creator>Corr, Sinéad C.</creator><creator>McManus, Gavin</creator><creator>Ryan, Dylan</creator><creator>Jacobs, Howard T.</creator><creator>Szibor, Marten</creator><creator>Xavier, Ramnik J.</creator><creator>Braun, Thomas</creator><creator>Frezza, Christian</creator><creator>Murphy, Michael P.</creator><creator>O’Neill, Luke A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20161006</creationdate><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><author>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</topic><topic>Citric Acid Cycle</topic><topic>gene expression</topic><topic>Glycolysis</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>immunometabolism</topic><topic>Inflammation - genetics</topic><topic>Inflammation - immunology</topic><topic>innate immunity</topic><topic>Interleukin-10 - metabolism</topic><topic>lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>macrophage</topic><topic>Macrophage Activation</topic><topic>macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Malonates - pharmacology</topic><topic>membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>mitochondrial membrane</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidoreductases - metabolism</topic><topic>phenotype</topic><topic>Plant Proteins - metabolism</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>reverse electron transport</topic><topic>rotenone</topic><topic>sequence analysis</topic><topic>Sequence Analysis, RNA</topic><topic>succinate</topic><topic>succinate dehydrogenase</topic><topic>succinate dehydrogenase (quinone)</topic><topic>Succinate Dehydrogenase - genetics</topic><topic>Succinate Dehydrogenase - metabolism</topic><topic>succinic acid</topic><topic>Succinic Acid - metabolism</topic><topic>toll-like receptors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Varma, Mukund</creatorcontrib><creatorcontrib>Bryant, Clare E.</creatorcontrib><creatorcontrib>Tourlomousis, Panagiotis</creatorcontrib><creatorcontrib>Däbritz, J. Henry M.</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Latorre, Isabel</creatorcontrib><creatorcontrib>Corr, Sinéad C.</creatorcontrib><creatorcontrib>McManus, Gavin</creatorcontrib><creatorcontrib>Ryan, Dylan</creatorcontrib><creatorcontrib>Jacobs, Howard T.</creatorcontrib><creatorcontrib>Szibor, Marten</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, Evanna L.</au><au>Kelly, Beth</au><au>Logan, Angela</au><au>Costa, Ana S.H.</au><au>Varma, Mukund</au><au>Bryant, Clare E.</au><au>Tourlomousis, Panagiotis</au><au>Däbritz, J. Henry M.</au><au>Gottlieb, Eyal</au><au>Latorre, Isabel</au><au>Corr, Sinéad C.</au><au>McManus, Gavin</au><au>Ryan, Dylan</au><au>Jacobs, Howard T.</au><au>Szibor, Marten</au><au>Xavier, Ramnik J.</au><au>Braun, Thomas</au><au>Frezza, Christian</au><au>Murphy, Michael P.</au><au>O’Neill, Luke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2016-10-06</date><risdate>2016</risdate><volume>167</volume><issue>2</issue><spage>457</spage><epage>470.e13</epage><pages>457-470.e13</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. [Display omitted] •LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27667687</pmid><doi>10.1016/j.cell.2016.08.064</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2016-10, Vol.167 (2), p.457-470.e13
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_2000413375
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects adenosine triphosphate
Adenosine Triphosphate - metabolism
Animals
Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology
Citric Acid Cycle
gene expression
Glycolysis
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
immunometabolism
Inflammation - genetics
Inflammation - immunology
innate immunity
Interleukin-10 - metabolism
lipopolysaccharides
Lipopolysaccharides - immunology
macrophage
Macrophage Activation
macrophages
Macrophages - immunology
Macrophages - metabolism
Malonates - pharmacology
membrane potential
Membrane Potential, Mitochondrial
Mice
Mice, Inbred C57BL
mitochondria
Mitochondria - drug effects
Mitochondria - enzymology
mitochondrial membrane
Mitochondrial Proteins - metabolism
oxidation
Oxidation-Reduction - drug effects
oxidative phosphorylation
Oxidative Phosphorylation - drug effects
Oxidoreductases - metabolism
phenotype
Plant Proteins - metabolism
reactive oxygen species
Reactive Oxygen Species - metabolism
reverse electron transport
rotenone
sequence analysis
Sequence Analysis, RNA
succinate
succinate dehydrogenase
succinate dehydrogenase (quinone)
Succinate Dehydrogenase - genetics
Succinate Dehydrogenase - metabolism
succinic acid
Succinic Acid - metabolism
toll-like receptors
Transcriptome
title Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Succinate%20Dehydrogenase%20Supports%20Metabolic%20Repurposing%20of%20Mitochondria%20to%20Drive%20Inflammatory%20Macrophages&rft.jtitle=Cell&rft.au=Mills,%20Evanna%20L.&rft.date=2016-10-06&rft.volume=167&rft.issue=2&rft.spage=457&rft.epage=470.e13&rft.pages=457-470.e13&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2016.08.064&rft_dat=%3Cproquest_cross%3E2000413375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835395070&rft_id=info:pmid/27667687&rft_els_id=S009286741631162X&rfr_iscdi=true