Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolys...
Gespeichert in:
Veröffentlicht in: | Cell 2016-10, Vol.167 (2), p.457-470.e13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470.e13 |
---|---|
container_issue | 2 |
container_start_page | 457 |
container_title | Cell |
container_volume | 167 |
creator | Mills, Evanna L. Kelly, Beth Logan, Angela Costa, Ana S.H. Varma, Mukund Bryant, Clare E. Tourlomousis, Panagiotis Däbritz, J. Henry M. Gottlieb, Eyal Latorre, Isabel Corr, Sinéad C. McManus, Gavin Ryan, Dylan Jacobs, Howard T. Szibor, Marten Xavier, Ramnik J. Braun, Thomas Frezza, Christian Murphy, Michael P. O’Neill, Luke A. |
description | Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
[Display omitted]
•LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response
To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation. |
doi_str_mv | 10.1016/j.cell.2016.08.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000413375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741631162X</els_id><sourcerecordid>2000413375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaCZpX6CLomU3dvVjWRJ0U5K0CWQoJOlaaOTrGQ225UpyYN6-GibtsllcdBHfOXDPQegjJTUltP2yrx0MQ83KXhNVk7Z5g1aUaFk1VLK3aEWIZpVqZXOOLlLaE0KUEOIdOmeybWWr5ArtHhfn_GQz4GvYHboYtjDZBPhxmecQc8JryHYTBu_wA8xLnEPy0xaHHq99Dm4Xpi56i3PA19E_A76b-sGOo80hHvDauhjmnd1Ceo_Oejsk-PDyXqJf32-erm6r-58_7q6-3VdONCpXsGENk73iSlstNGWWCM7LuJ4TrTl3lgnRdgxa0HzjrGblq2ddU-RSWn6JPp985xh-L5CyGX065mQnCEsyrKTQUM6leBWliguuBZGkoOyElntSitCbOfrRxoOhxBzLMHtzVJpjGYYoU8oook8v_stmhO6f5G_6Bfh6AqAE8uwhmuQ8TA46H8Fl0wX_P_8_SfCbjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835395070</pqid></control><display><type>article</type><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</creator><creatorcontrib>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</creatorcontrib><description>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
[Display omitted]
•LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response
To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2016.08.064</identifier><identifier>PMID: 27667687</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Animals ; Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology ; Citric Acid Cycle ; gene expression ; Glycolysis ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; immunometabolism ; Inflammation - genetics ; Inflammation - immunology ; innate immunity ; Interleukin-10 - metabolism ; lipopolysaccharides ; Lipopolysaccharides - immunology ; macrophage ; Macrophage Activation ; macrophages ; Macrophages - immunology ; Macrophages - metabolism ; Malonates - pharmacology ; membrane potential ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; mitochondria ; Mitochondria - drug effects ; Mitochondria - enzymology ; mitochondrial membrane ; Mitochondrial Proteins - metabolism ; oxidation ; Oxidation-Reduction - drug effects ; oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Oxidoreductases - metabolism ; phenotype ; Plant Proteins - metabolism ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; reverse electron transport ; rotenone ; sequence analysis ; Sequence Analysis, RNA ; succinate ; succinate dehydrogenase ; succinate dehydrogenase (quinone) ; Succinate Dehydrogenase - genetics ; Succinate Dehydrogenase - metabolism ; succinic acid ; Succinic Acid - metabolism ; toll-like receptors ; Transcriptome</subject><ispartof>Cell, 2016-10, Vol.167 (2), p.457-470.e13</ispartof><rights>2016</rights><rights>Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</citedby><cites>FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2016.08.064$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27667687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Varma, Mukund</creatorcontrib><creatorcontrib>Bryant, Clare E.</creatorcontrib><creatorcontrib>Tourlomousis, Panagiotis</creatorcontrib><creatorcontrib>Däbritz, J. Henry M.</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Latorre, Isabel</creatorcontrib><creatorcontrib>Corr, Sinéad C.</creatorcontrib><creatorcontrib>McManus, Gavin</creatorcontrib><creatorcontrib>Ryan, Dylan</creatorcontrib><creatorcontrib>Jacobs, Howard T.</creatorcontrib><creatorcontrib>Szibor, Marten</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><title>Cell</title><addtitle>Cell</addtitle><description>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
[Display omitted]
•LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response
To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</description><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</subject><subject>Citric Acid Cycle</subject><subject>gene expression</subject><subject>Glycolysis</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>immunometabolism</subject><subject>Inflammation - genetics</subject><subject>Inflammation - immunology</subject><subject>innate immunity</subject><subject>Interleukin-10 - metabolism</subject><subject>lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>macrophage</subject><subject>Macrophage Activation</subject><subject>macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Malonates - pharmacology</subject><subject>membrane potential</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>mitochondrial membrane</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Oxidoreductases - metabolism</subject><subject>phenotype</subject><subject>Plant Proteins - metabolism</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>reverse electron transport</subject><subject>rotenone</subject><subject>sequence analysis</subject><subject>Sequence Analysis, RNA</subject><subject>succinate</subject><subject>succinate dehydrogenase</subject><subject>succinate dehydrogenase (quinone)</subject><subject>Succinate Dehydrogenase - genetics</subject><subject>Succinate Dehydrogenase - metabolism</subject><subject>succinic acid</subject><subject>Succinic Acid - metabolism</subject><subject>toll-like receptors</subject><subject>Transcriptome</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1q3DAUhUVpaCZpX6CLomU3dvVjWRJ0U5K0CWQoJOlaaOTrGQ225UpyYN6-GibtsllcdBHfOXDPQegjJTUltP2yrx0MQ83KXhNVk7Z5g1aUaFk1VLK3aEWIZpVqZXOOLlLaE0KUEOIdOmeybWWr5ArtHhfn_GQz4GvYHboYtjDZBPhxmecQc8JryHYTBu_wA8xLnEPy0xaHHq99Dm4Xpi56i3PA19E_A76b-sGOo80hHvDauhjmnd1Ceo_Oejsk-PDyXqJf32-erm6r-58_7q6-3VdONCpXsGENk73iSlstNGWWCM7LuJ4TrTl3lgnRdgxa0HzjrGblq2ddU-RSWn6JPp985xh-L5CyGX065mQnCEsyrKTQUM6leBWliguuBZGkoOyElntSitCbOfrRxoOhxBzLMHtzVJpjGYYoU8oook8v_stmhO6f5G_6Bfh6AqAE8uwhmuQ8TA46H8Fl0wX_P_8_SfCbjg</recordid><startdate>20161006</startdate><enddate>20161006</enddate><creator>Mills, Evanna L.</creator><creator>Kelly, Beth</creator><creator>Logan, Angela</creator><creator>Costa, Ana S.H.</creator><creator>Varma, Mukund</creator><creator>Bryant, Clare E.</creator><creator>Tourlomousis, Panagiotis</creator><creator>Däbritz, J. Henry M.</creator><creator>Gottlieb, Eyal</creator><creator>Latorre, Isabel</creator><creator>Corr, Sinéad C.</creator><creator>McManus, Gavin</creator><creator>Ryan, Dylan</creator><creator>Jacobs, Howard T.</creator><creator>Szibor, Marten</creator><creator>Xavier, Ramnik J.</creator><creator>Braun, Thomas</creator><creator>Frezza, Christian</creator><creator>Murphy, Michael P.</creator><creator>O’Neill, Luke A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20161006</creationdate><title>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</title><author>Mills, Evanna L. ; Kelly, Beth ; Logan, Angela ; Costa, Ana S.H. ; Varma, Mukund ; Bryant, Clare E. ; Tourlomousis, Panagiotis ; Däbritz, J. Henry M. ; Gottlieb, Eyal ; Latorre, Isabel ; Corr, Sinéad C. ; McManus, Gavin ; Ryan, Dylan ; Jacobs, Howard T. ; Szibor, Marten ; Xavier, Ramnik J. ; Braun, Thomas ; Frezza, Christian ; Murphy, Michael P. ; O’Neill, Luke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-eb2427f8389a95912a0533053cf309933ca2556d2e6e93bca923caf2d454877a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</topic><topic>Citric Acid Cycle</topic><topic>gene expression</topic><topic>Glycolysis</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>immunometabolism</topic><topic>Inflammation - genetics</topic><topic>Inflammation - immunology</topic><topic>innate immunity</topic><topic>Interleukin-10 - metabolism</topic><topic>lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>macrophage</topic><topic>Macrophage Activation</topic><topic>macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Malonates - pharmacology</topic><topic>membrane potential</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>mitochondrial membrane</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Oxidoreductases - metabolism</topic><topic>phenotype</topic><topic>Plant Proteins - metabolism</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>reverse electron transport</topic><topic>rotenone</topic><topic>sequence analysis</topic><topic>Sequence Analysis, RNA</topic><topic>succinate</topic><topic>succinate dehydrogenase</topic><topic>succinate dehydrogenase (quinone)</topic><topic>Succinate Dehydrogenase - genetics</topic><topic>Succinate Dehydrogenase - metabolism</topic><topic>succinic acid</topic><topic>Succinic Acid - metabolism</topic><topic>toll-like receptors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Varma, Mukund</creatorcontrib><creatorcontrib>Bryant, Clare E.</creatorcontrib><creatorcontrib>Tourlomousis, Panagiotis</creatorcontrib><creatorcontrib>Däbritz, J. Henry M.</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Latorre, Isabel</creatorcontrib><creatorcontrib>Corr, Sinéad C.</creatorcontrib><creatorcontrib>McManus, Gavin</creatorcontrib><creatorcontrib>Ryan, Dylan</creatorcontrib><creatorcontrib>Jacobs, Howard T.</creatorcontrib><creatorcontrib>Szibor, Marten</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Braun, Thomas</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, Evanna L.</au><au>Kelly, Beth</au><au>Logan, Angela</au><au>Costa, Ana S.H.</au><au>Varma, Mukund</au><au>Bryant, Clare E.</au><au>Tourlomousis, Panagiotis</au><au>Däbritz, J. Henry M.</au><au>Gottlieb, Eyal</au><au>Latorre, Isabel</au><au>Corr, Sinéad C.</au><au>McManus, Gavin</au><au>Ryan, Dylan</au><au>Jacobs, Howard T.</au><au>Szibor, Marten</au><au>Xavier, Ramnik J.</au><au>Braun, Thomas</au><au>Frezza, Christian</au><au>Murphy, Michael P.</au><au>O’Neill, Luke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2016-10-06</date><risdate>2016</risdate><volume>167</volume><issue>2</issue><spage>457</spage><epage>470.e13</epage><pages>457-470.e13</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
[Display omitted]
•LPS induces mitochondrial repurposing from ATP synthesis to ROS production•Oxidation of succinate and mitochondrial hyperpolarization drive ROS production•Blocking LPS-induced ROS production or hyperpolarization inhibits IL-1β•SDH is critical for the inflammatory response
To support their pro-inflammatory function, activated macrophages repurpose their mitochondria, switching from ATP production to ROS generation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27667687</pmid><doi>10.1016/j.cell.2016.08.064</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2016-10, Vol.167 (2), p.457-470.e13 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_2000413375 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | adenosine triphosphate Adenosine Triphosphate - metabolism Animals Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology Citric Acid Cycle gene expression Glycolysis Hypoxia-Inducible Factor 1, alpha Subunit - metabolism immunometabolism Inflammation - genetics Inflammation - immunology innate immunity Interleukin-10 - metabolism lipopolysaccharides Lipopolysaccharides - immunology macrophage Macrophage Activation macrophages Macrophages - immunology Macrophages - metabolism Malonates - pharmacology membrane potential Membrane Potential, Mitochondrial Mice Mice, Inbred C57BL mitochondria Mitochondria - drug effects Mitochondria - enzymology mitochondrial membrane Mitochondrial Proteins - metabolism oxidation Oxidation-Reduction - drug effects oxidative phosphorylation Oxidative Phosphorylation - drug effects Oxidoreductases - metabolism phenotype Plant Proteins - metabolism reactive oxygen species Reactive Oxygen Species - metabolism reverse electron transport rotenone sequence analysis Sequence Analysis, RNA succinate succinate dehydrogenase succinate dehydrogenase (quinone) Succinate Dehydrogenase - genetics Succinate Dehydrogenase - metabolism succinic acid Succinic Acid - metabolism toll-like receptors Transcriptome |
title | Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Succinate%20Dehydrogenase%20Supports%20Metabolic%20Repurposing%20of%20Mitochondria%20to%20Drive%20Inflammatory%20Macrophages&rft.jtitle=Cell&rft.au=Mills,%20Evanna%20L.&rft.date=2016-10-06&rft.volume=167&rft.issue=2&rft.spage=457&rft.epage=470.e13&rft.pages=457-470.e13&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2016.08.064&rft_dat=%3Cproquest_cross%3E2000413375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835395070&rft_id=info:pmid/27667687&rft_els_id=S009286741631162X&rfr_iscdi=true |