A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells
The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-06, Vol.137 (23), p.7337-7346 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7346 |
---|---|
container_issue | 23 |
container_start_page | 7337 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Choi, Chun Kit K Li, Jinming Wei, Kongchang Xu, Yang J Ho, Lok Wai C Zhu, Meiling To, Kenneth K. W Choi, Chung Hang J Bian, Liming |
description | The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA–hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA–hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening. |
doi_str_mv | 10.1021/jacs.5b01457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000368606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1689844343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-34e8deb247fca637a0039883696d2be233bc2415316a8e035097eed9939018c43</originalsourceid><addsrcrecordid>eNqFkctO5DAQRS00CBqY3axHXs6CgF9x7N20mqfUPATMOnKSCuNWYjd2skBs-Af-kC_BLZqZDRKrUkmnbtWti9APSg4oYfRwYep4kFeEirzYQBOaM5LllMlvaEIIYVmhJN9GOzEuUiuYoltom-VaS07ZBD1N8anvmt_Xvnts_NL01gGe-QCvzy-3f6Hr8KVxfhl8Bbj1Ac-9u8_uIPT43A3B1IkYOxPwEQxQD9Y77Ft8Yevgby6nEVuHj2zbQgA3WDNYd49vB-jxLM3FPbTZmi7C93XdRX9Oju9mZ9n86vR8Np1nRjA-ZFyAaqBiomhrI3lhCOFaKS61bFgFjPOqZoLmnEqjgPCc6AKg0ZprQlUt-C769a6bbDyMEIeyt3F1uXHgx1iy9BgulSTyS5RKpZUQXPCE7r-jyWuMAdpyGWxvwmNJSblKplwlU66TSfjPtfJY9dD8gz-i-L96NbXwY3DpJ59rvQHPZZcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689844343</pqid></control><display><type>article</type><title>A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells</title><source>ACS Publications</source><source>MEDLINE</source><creator>Choi, Chun Kit K ; Li, Jinming ; Wei, Kongchang ; Xu, Yang J ; Ho, Lok Wai C ; Zhu, Meiling ; To, Kenneth K. W ; Choi, Chung Hang J ; Bian, Liming</creator><creatorcontrib>Choi, Chun Kit K ; Li, Jinming ; Wei, Kongchang ; Xu, Yang J ; Ho, Lok Wai C ; Zhu, Meiling ; To, Kenneth K. W ; Choi, Chung Hang J ; Bian, Liming</creatorcontrib><description>The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA–hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA–hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b01457</identifier><identifier>PMID: 25996312</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bone formation ; cell culture ; Cell Differentiation ; culture media ; dissociation ; DNA ; drugs ; fibroblasts ; fluorescence ; gold ; Gold - chemistry ; Humans ; Indoles - chemistry ; Intracellular Space - chemistry ; Mesenchymal Stromal Cells - chemistry ; Mesenchymal Stromal Cells - cytology ; microRNA ; MicroRNAs - analysis ; Molecular Probes - chemistry ; Molecular Structure ; monitoring ; nanogold ; Nanoparticles - chemistry ; osteoblasts ; Polymers - chemistry ; screening ; stem cells ; transfection</subject><ispartof>Journal of the American Chemical Society, 2015-06, Vol.137 (23), p.7337-7346</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-34e8deb247fca637a0039883696d2be233bc2415316a8e035097eed9939018c43</citedby><cites>FETCH-LOGICAL-a423t-34e8deb247fca637a0039883696d2be233bc2415316a8e035097eed9939018c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b01457$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b01457$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25996312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Chun Kit K</creatorcontrib><creatorcontrib>Li, Jinming</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Xu, Yang J</creatorcontrib><creatorcontrib>Ho, Lok Wai C</creatorcontrib><creatorcontrib>Zhu, Meiling</creatorcontrib><creatorcontrib>To, Kenneth K. W</creatorcontrib><creatorcontrib>Choi, Chung Hang J</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><title>A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA–hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA–hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.</description><subject>bone formation</subject><subject>cell culture</subject><subject>Cell Differentiation</subject><subject>culture media</subject><subject>dissociation</subject><subject>DNA</subject><subject>drugs</subject><subject>fibroblasts</subject><subject>fluorescence</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Indoles - chemistry</subject><subject>Intracellular Space - chemistry</subject><subject>Mesenchymal Stromal Cells - chemistry</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>microRNA</subject><subject>MicroRNAs - analysis</subject><subject>Molecular Probes - chemistry</subject><subject>Molecular Structure</subject><subject>monitoring</subject><subject>nanogold</subject><subject>Nanoparticles - chemistry</subject><subject>osteoblasts</subject><subject>Polymers - chemistry</subject><subject>screening</subject><subject>stem cells</subject><subject>transfection</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctO5DAQRS00CBqY3axHXs6CgF9x7N20mqfUPATMOnKSCuNWYjd2skBs-Af-kC_BLZqZDRKrUkmnbtWti9APSg4oYfRwYep4kFeEirzYQBOaM5LllMlvaEIIYVmhJN9GOzEuUiuYoltom-VaS07ZBD1N8anvmt_Xvnts_NL01gGe-QCvzy-3f6Hr8KVxfhl8Bbj1Ac-9u8_uIPT43A3B1IkYOxPwEQxQD9Y77Ft8Yevgby6nEVuHj2zbQgA3WDNYd49vB-jxLM3FPbTZmi7C93XdRX9Oju9mZ9n86vR8Np1nRjA-ZFyAaqBiomhrI3lhCOFaKS61bFgFjPOqZoLmnEqjgPCc6AKg0ZprQlUt-C769a6bbDyMEIeyt3F1uXHgx1iy9BgulSTyS5RKpZUQXPCE7r-jyWuMAdpyGWxvwmNJSblKplwlU66TSfjPtfJY9dD8gz-i-L96NbXwY3DpJ59rvQHPZZcA</recordid><startdate>20150617</startdate><enddate>20150617</enddate><creator>Choi, Chun Kit K</creator><creator>Li, Jinming</creator><creator>Wei, Kongchang</creator><creator>Xu, Yang J</creator><creator>Ho, Lok Wai C</creator><creator>Zhu, Meiling</creator><creator>To, Kenneth K. W</creator><creator>Choi, Chung Hang J</creator><creator>Bian, Liming</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20150617</creationdate><title>A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells</title><author>Choi, Chun Kit K ; Li, Jinming ; Wei, Kongchang ; Xu, Yang J ; Ho, Lok Wai C ; Zhu, Meiling ; To, Kenneth K. W ; Choi, Chung Hang J ; Bian, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-34e8deb247fca637a0039883696d2be233bc2415316a8e035097eed9939018c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bone formation</topic><topic>cell culture</topic><topic>Cell Differentiation</topic><topic>culture media</topic><topic>dissociation</topic><topic>DNA</topic><topic>drugs</topic><topic>fibroblasts</topic><topic>fluorescence</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Indoles - chemistry</topic><topic>Intracellular Space - chemistry</topic><topic>Mesenchymal Stromal Cells - chemistry</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>microRNA</topic><topic>MicroRNAs - analysis</topic><topic>Molecular Probes - chemistry</topic><topic>Molecular Structure</topic><topic>monitoring</topic><topic>nanogold</topic><topic>Nanoparticles - chemistry</topic><topic>osteoblasts</topic><topic>Polymers - chemistry</topic><topic>screening</topic><topic>stem cells</topic><topic>transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Chun Kit K</creatorcontrib><creatorcontrib>Li, Jinming</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Xu, Yang J</creatorcontrib><creatorcontrib>Ho, Lok Wai C</creatorcontrib><creatorcontrib>Zhu, Meiling</creatorcontrib><creatorcontrib>To, Kenneth K. W</creatorcontrib><creatorcontrib>Choi, Chung Hang J</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Chun Kit K</au><au>Li, Jinming</au><au>Wei, Kongchang</au><au>Xu, Yang J</au><au>Ho, Lok Wai C</au><au>Zhu, Meiling</au><au>To, Kenneth K. W</au><au>Choi, Chung Hang J</au><au>Bian, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-06-17</date><risdate>2015</risdate><volume>137</volume><issue>23</issue><spage>7337</spage><epage>7346</epage><pages>7337-7346</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA–hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA–hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25996312</pmid><doi>10.1021/jacs.5b01457</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-06, Vol.137 (23), p.7337-7346 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2000368606 |
source | ACS Publications; MEDLINE |
subjects | bone formation cell culture Cell Differentiation culture media dissociation DNA drugs fibroblasts fluorescence gold Gold - chemistry Humans Indoles - chemistry Intracellular Space - chemistry Mesenchymal Stromal Cells - chemistry Mesenchymal Stromal Cells - cytology microRNA MicroRNAs - analysis Molecular Probes - chemistry Molecular Structure monitoring nanogold Nanoparticles - chemistry osteoblasts Polymers - chemistry screening stem cells transfection |
title | A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Gold@Polydopamine%20Core%E2%80%93Shell%20Nanoprobe%20for%20Long-Term%20Intracellular%20Detection%20of%20MicroRNAs%20in%20Differentiating%20Stem%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Choi,%20Chun%20Kit%20K&rft.date=2015-06-17&rft.volume=137&rft.issue=23&rft.spage=7337&rft.epage=7346&rft.pages=7337-7346&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b01457&rft_dat=%3Cproquest_cross%3E1689844343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689844343&rft_id=info:pmid/25996312&rfr_iscdi=true |