Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering

Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-10, Vol.104, p.323-338
Hauptverfasser: Dhand, Chetna, Ong, Seow Theng, Dwivedi, Neeraj, Diaz, Silvia Marrero, Venugopal, Jayarama Reddy, Navaneethan, Balchandar, Fazil, Mobashar H.U.T, Liu, Shouping, Seitz, Vera, Wintermantel, Erich, Beuerman, Roger W, Ramakrishna, Seeram, Verma, Navin K, Lakshminarayanan, Rajamani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue
container_start_page 323
container_title Biomaterials
container_volume 104
creator Dhand, Chetna
Ong, Seow Theng
Dwivedi, Neeraj
Diaz, Silvia Marrero
Venugopal, Jayarama Reddy
Navaneethan, Balchandar
Fazil, Mobashar H.U.T
Liu, Shouping
Seitz, Vera
Wintermantel, Erich
Beuerman, Roger W
Ramakrishna, Seeram
Verma, Navin K
Lakshminarayanan, Rajamani
description Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.
doi_str_mv 10.1016/j.biomaterials.2016.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000305403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961216303386</els_id><sourcerecordid>2000305403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEokvhKyCLE5eEGSeOEw5ItPyVKnEAzpZjT1beJvZiJ0jl0-N0C0Jc4GSN9XszT_OmKJ4hVAjYvjhUgwuzXig6PaWK578KZAUg7xU77GRXih7E_WIH2PCyb5GfFY9SOkCuoeEPizMuGykk73ZFvHChdD4dXSTLnGfJLSszMaQ0OX_t_J5pb9nsPEU9uR96ccGzMDKayCwZO66emTBNek9ZbPQ4hskmNobIhuCJLS6llRj5fW6RHfv94-LBmH3Tk7v3vPj67u2Xyw_l1af3Hy9fX5VG1M1Sjr0UdWfB2AF7jqPlFgWaDs2ILQ5UC06m7wUYbAQO2JHVQLwFq2UtjanPi-envscYvq2UFjW7ZChb9RTWpDgA1CAaqP-JYoco2kzLjL48obc7ijSqY3SzjjcKQW3xqIP6Mx61xaNAKrgVP72bsw4z2d_SX3lk4M0JoLyY746iSsaRN2RzPmZRNrj_m_PqrzYmp-mMnq7phtIhrNFvGlSJK1Cft0PZ7gTbOm-ja-ufhM2_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811560307</pqid></control><display><type>article</type><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</creator><creatorcontrib>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</creatorcontrib><description>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.07.007</identifier><identifier>PMID: 27475728</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; ammonium carbonate ; Biomimetics - instrumentation ; Bone ; Bone Development - physiology ; bone formation ; bones ; Calcification, Physiologic - physiology ; calcium ; calcium carbonate ; Catecholamine ; cations ; cell adhesion ; Cell Adhesion - physiology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Collagen ; Collagen - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinking ; Dentistry ; dopamine ; Elastic Modulus - physiology ; Electroplating - methods ; Electrospinning ; Equipment Design ; Equipment Failure Analysis ; Humans ; mechanical properties ; Mineralization ; modulus of elasticity ; nanofibers ; norepinephrine ; osteoblasts ; Osteoblasts - cytology ; Osteoblasts - physiology ; osteocalcin ; Osteogenesis - physiology ; osteopontin ; pain ; people ; photoluminescence ; polymerization ; tissue culture ; tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Biomaterials, 2016-10, Vol.104, p.323-338</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</citedby><cites>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216303386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27475728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhand, Chetna</creatorcontrib><creatorcontrib>Ong, Seow Theng</creatorcontrib><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Diaz, Silvia Marrero</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Navaneethan, Balchandar</creatorcontrib><creatorcontrib>Fazil, Mobashar H.U.T</creatorcontrib><creatorcontrib>Liu, Shouping</creatorcontrib><creatorcontrib>Seitz, Vera</creatorcontrib><creatorcontrib>Wintermantel, Erich</creatorcontrib><creatorcontrib>Beuerman, Roger W</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Verma, Navin K</creatorcontrib><creatorcontrib>Lakshminarayanan, Rajamani</creatorcontrib><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</description><subject>Advanced Basic Science</subject><subject>ammonium carbonate</subject><subject>Biomimetics - instrumentation</subject><subject>Bone</subject><subject>Bone Development - physiology</subject><subject>bone formation</subject><subject>bones</subject><subject>Calcification, Physiologic - physiology</subject><subject>calcium</subject><subject>calcium carbonate</subject><subject>Catecholamine</subject><subject>cations</subject><subject>cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Dentistry</subject><subject>dopamine</subject><subject>Elastic Modulus - physiology</subject><subject>Electroplating - methods</subject><subject>Electrospinning</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>mechanical properties</subject><subject>Mineralization</subject><subject>modulus of elasticity</subject><subject>nanofibers</subject><subject>norepinephrine</subject><subject>osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>osteocalcin</subject><subject>Osteogenesis - physiology</subject><subject>osteopontin</subject><subject>pain</subject><subject>people</subject><subject>photoluminescence</subject><subject>polymerization</subject><subject>tissue culture</subject><subject>tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxSMEokvhKyCLE5eEGSeOEw5ItPyVKnEAzpZjT1beJvZiJ0jl0-N0C0Jc4GSN9XszT_OmKJ4hVAjYvjhUgwuzXig6PaWK578KZAUg7xU77GRXih7E_WIH2PCyb5GfFY9SOkCuoeEPizMuGykk73ZFvHChdD4dXSTLnGfJLSszMaQ0OX_t_J5pb9nsPEU9uR96ccGzMDKayCwZO66emTBNek9ZbPQ4hskmNobIhuCJLS6llRj5fW6RHfv94-LBmH3Tk7v3vPj67u2Xyw_l1af3Hy9fX5VG1M1Sjr0UdWfB2AF7jqPlFgWaDs2ILQ5UC06m7wUYbAQO2JHVQLwFq2UtjanPi-envscYvq2UFjW7ZChb9RTWpDgA1CAaqP-JYoco2kzLjL48obc7ijSqY3SzjjcKQW3xqIP6Mx61xaNAKrgVP72bsw4z2d_SX3lk4M0JoLyY746iSsaRN2RzPmZRNrj_m_PqrzYmp-mMnq7phtIhrNFvGlSJK1Cft0PZ7gTbOm-ja-ufhM2_AA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Dhand, Chetna</creator><creator>Ong, Seow Theng</creator><creator>Dwivedi, Neeraj</creator><creator>Diaz, Silvia Marrero</creator><creator>Venugopal, Jayarama Reddy</creator><creator>Navaneethan, Balchandar</creator><creator>Fazil, Mobashar H.U.T</creator><creator>Liu, Shouping</creator><creator>Seitz, Vera</creator><creator>Wintermantel, Erich</creator><creator>Beuerman, Roger W</creator><creator>Ramakrishna, Seeram</creator><creator>Verma, Navin K</creator><creator>Lakshminarayanan, Rajamani</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20161001</creationdate><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><author>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>ammonium carbonate</topic><topic>Biomimetics - instrumentation</topic><topic>Bone</topic><topic>Bone Development - physiology</topic><topic>bone formation</topic><topic>bones</topic><topic>Calcification, Physiologic - physiology</topic><topic>calcium</topic><topic>calcium carbonate</topic><topic>Catecholamine</topic><topic>cations</topic><topic>cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Dentistry</topic><topic>dopamine</topic><topic>Elastic Modulus - physiology</topic><topic>Electroplating - methods</topic><topic>Electrospinning</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>mechanical properties</topic><topic>Mineralization</topic><topic>modulus of elasticity</topic><topic>nanofibers</topic><topic>norepinephrine</topic><topic>osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>osteocalcin</topic><topic>Osteogenesis - physiology</topic><topic>osteopontin</topic><topic>pain</topic><topic>people</topic><topic>photoluminescence</topic><topic>polymerization</topic><topic>tissue culture</topic><topic>tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhand, Chetna</creatorcontrib><creatorcontrib>Ong, Seow Theng</creatorcontrib><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Diaz, Silvia Marrero</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Navaneethan, Balchandar</creatorcontrib><creatorcontrib>Fazil, Mobashar H.U.T</creatorcontrib><creatorcontrib>Liu, Shouping</creatorcontrib><creatorcontrib>Seitz, Vera</creatorcontrib><creatorcontrib>Wintermantel, Erich</creatorcontrib><creatorcontrib>Beuerman, Roger W</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Verma, Navin K</creatorcontrib><creatorcontrib>Lakshminarayanan, Rajamani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhand, Chetna</au><au>Ong, Seow Theng</au><au>Dwivedi, Neeraj</au><au>Diaz, Silvia Marrero</au><au>Venugopal, Jayarama Reddy</au><au>Navaneethan, Balchandar</au><au>Fazil, Mobashar H.U.T</au><au>Liu, Shouping</au><au>Seitz, Vera</au><au>Wintermantel, Erich</au><au>Beuerman, Roger W</au><au>Ramakrishna, Seeram</au><au>Verma, Navin K</au><au>Lakshminarayanan, Rajamani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>104</volume><spage>323</spage><epage>338</epage><pages>323-338</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27475728</pmid><doi>10.1016/j.biomaterials.2016.07.007</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-10, Vol.104, p.323-338
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2000305403
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
ammonium carbonate
Biomimetics - instrumentation
Bone
Bone Development - physiology
bone formation
bones
Calcification, Physiologic - physiology
calcium
calcium carbonate
Catecholamine
cations
cell adhesion
Cell Adhesion - physiology
Cell Differentiation
Cell Proliferation
Cells, Cultured
Collagen
Collagen - chemistry
Cross-Linking Reagents - chemistry
Crosslinking
Dentistry
dopamine
Elastic Modulus - physiology
Electroplating - methods
Electrospinning
Equipment Design
Equipment Failure Analysis
Humans
mechanical properties
Mineralization
modulus of elasticity
nanofibers
norepinephrine
osteoblasts
Osteoblasts - cytology
Osteoblasts - physiology
osteocalcin
Osteogenesis - physiology
osteopontin
pain
people
photoluminescence
polymerization
tissue culture
tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
title Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20in%20situ%20crosslinking%20and%20mineralization%20of%20electrospun%20collagen%20scaffolds%20for%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=Dhand,%20Chetna&rft.date=2016-10-01&rft.volume=104&rft.spage=323&rft.epage=338&rft.pages=323-338&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.07.007&rft_dat=%3Cproquest_cross%3E2000305403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811560307&rft_id=info:pmid/27475728&rft_els_id=1_s2_0_S0142961216303386&rfr_iscdi=true