Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering
Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2016-10, Vol.104, p.323-338 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | |
container_start_page | 323 |
container_title | Biomaterials |
container_volume | 104 |
creator | Dhand, Chetna Ong, Seow Theng Dwivedi, Neeraj Diaz, Silvia Marrero Venugopal, Jayarama Reddy Navaneethan, Balchandar Fazil, Mobashar H.U.T Liu, Shouping Seitz, Vera Wintermantel, Erich Beuerman, Roger W Ramakrishna, Seeram Verma, Navin K Lakshminarayanan, Rajamani |
description | Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. |
doi_str_mv | 10.1016/j.biomaterials.2016.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000305403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961216303386</els_id><sourcerecordid>2000305403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEokvhKyCLE5eEGSeOEw5ItPyVKnEAzpZjT1beJvZiJ0jl0-N0C0Jc4GSN9XszT_OmKJ4hVAjYvjhUgwuzXig6PaWK578KZAUg7xU77GRXih7E_WIH2PCyb5GfFY9SOkCuoeEPizMuGykk73ZFvHChdD4dXSTLnGfJLSszMaQ0OX_t_J5pb9nsPEU9uR96ccGzMDKayCwZO66emTBNek9ZbPQ4hskmNobIhuCJLS6llRj5fW6RHfv94-LBmH3Tk7v3vPj67u2Xyw_l1af3Hy9fX5VG1M1Sjr0UdWfB2AF7jqPlFgWaDs2ILQ5UC06m7wUYbAQO2JHVQLwFq2UtjanPi-envscYvq2UFjW7ZChb9RTWpDgA1CAaqP-JYoco2kzLjL48obc7ijSqY3SzjjcKQW3xqIP6Mx61xaNAKrgVP72bsw4z2d_SX3lk4M0JoLyY746iSsaRN2RzPmZRNrj_m_PqrzYmp-mMnq7phtIhrNFvGlSJK1Cft0PZ7gTbOm-ja-ufhM2_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811560307</pqid></control><display><type>article</type><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</creator><creatorcontrib>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</creatorcontrib><description>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.07.007</identifier><identifier>PMID: 27475728</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; ammonium carbonate ; Biomimetics - instrumentation ; Bone ; Bone Development - physiology ; bone formation ; bones ; Calcification, Physiologic - physiology ; calcium ; calcium carbonate ; Catecholamine ; cations ; cell adhesion ; Cell Adhesion - physiology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Collagen ; Collagen - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinking ; Dentistry ; dopamine ; Elastic Modulus - physiology ; Electroplating - methods ; Electrospinning ; Equipment Design ; Equipment Failure Analysis ; Humans ; mechanical properties ; Mineralization ; modulus of elasticity ; nanofibers ; norepinephrine ; osteoblasts ; Osteoblasts - cytology ; Osteoblasts - physiology ; osteocalcin ; Osteogenesis - physiology ; osteopontin ; pain ; people ; photoluminescence ; polymerization ; tissue culture ; tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Biomaterials, 2016-10, Vol.104, p.323-338</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</citedby><cites>FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216303386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27475728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhand, Chetna</creatorcontrib><creatorcontrib>Ong, Seow Theng</creatorcontrib><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Diaz, Silvia Marrero</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Navaneethan, Balchandar</creatorcontrib><creatorcontrib>Fazil, Mobashar H.U.T</creatorcontrib><creatorcontrib>Liu, Shouping</creatorcontrib><creatorcontrib>Seitz, Vera</creatorcontrib><creatorcontrib>Wintermantel, Erich</creatorcontrib><creatorcontrib>Beuerman, Roger W</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Verma, Navin K</creatorcontrib><creatorcontrib>Lakshminarayanan, Rajamani</creatorcontrib><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</description><subject>Advanced Basic Science</subject><subject>ammonium carbonate</subject><subject>Biomimetics - instrumentation</subject><subject>Bone</subject><subject>Bone Development - physiology</subject><subject>bone formation</subject><subject>bones</subject><subject>Calcification, Physiologic - physiology</subject><subject>calcium</subject><subject>calcium carbonate</subject><subject>Catecholamine</subject><subject>cations</subject><subject>cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Dentistry</subject><subject>dopamine</subject><subject>Elastic Modulus - physiology</subject><subject>Electroplating - methods</subject><subject>Electrospinning</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>mechanical properties</subject><subject>Mineralization</subject><subject>modulus of elasticity</subject><subject>nanofibers</subject><subject>norepinephrine</subject><subject>osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>osteocalcin</subject><subject>Osteogenesis - physiology</subject><subject>osteopontin</subject><subject>pain</subject><subject>people</subject><subject>photoluminescence</subject><subject>polymerization</subject><subject>tissue culture</subject><subject>tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxSMEokvhKyCLE5eEGSeOEw5ItPyVKnEAzpZjT1beJvZiJ0jl0-N0C0Jc4GSN9XszT_OmKJ4hVAjYvjhUgwuzXig6PaWK578KZAUg7xU77GRXih7E_WIH2PCyb5GfFY9SOkCuoeEPizMuGykk73ZFvHChdD4dXSTLnGfJLSszMaQ0OX_t_J5pb9nsPEU9uR96ccGzMDKayCwZO66emTBNek9ZbPQ4hskmNobIhuCJLS6llRj5fW6RHfv94-LBmH3Tk7v3vPj67u2Xyw_l1af3Hy9fX5VG1M1Sjr0UdWfB2AF7jqPlFgWaDs2ILQ5UC06m7wUYbAQO2JHVQLwFq2UtjanPi-envscYvq2UFjW7ZChb9RTWpDgA1CAaqP-JYoco2kzLjL48obc7ijSqY3SzjjcKQW3xqIP6Mx61xaNAKrgVP72bsw4z2d_SX3lk4M0JoLyY746iSsaRN2RzPmZRNrj_m_PqrzYmp-mMnq7phtIhrNFvGlSJK1Cft0PZ7gTbOm-ja-ufhM2_AA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Dhand, Chetna</creator><creator>Ong, Seow Theng</creator><creator>Dwivedi, Neeraj</creator><creator>Diaz, Silvia Marrero</creator><creator>Venugopal, Jayarama Reddy</creator><creator>Navaneethan, Balchandar</creator><creator>Fazil, Mobashar H.U.T</creator><creator>Liu, Shouping</creator><creator>Seitz, Vera</creator><creator>Wintermantel, Erich</creator><creator>Beuerman, Roger W</creator><creator>Ramakrishna, Seeram</creator><creator>Verma, Navin K</creator><creator>Lakshminarayanan, Rajamani</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20161001</creationdate><title>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</title><author>Dhand, Chetna ; Ong, Seow Theng ; Dwivedi, Neeraj ; Diaz, Silvia Marrero ; Venugopal, Jayarama Reddy ; Navaneethan, Balchandar ; Fazil, Mobashar H.U.T ; Liu, Shouping ; Seitz, Vera ; Wintermantel, Erich ; Beuerman, Roger W ; Ramakrishna, Seeram ; Verma, Navin K ; Lakshminarayanan, Rajamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f97538d0cdb1921fd2d151c81cf161be352ec9950c1451b18eda0e260da737cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>ammonium carbonate</topic><topic>Biomimetics - instrumentation</topic><topic>Bone</topic><topic>Bone Development - physiology</topic><topic>bone formation</topic><topic>bones</topic><topic>Calcification, Physiologic - physiology</topic><topic>calcium</topic><topic>calcium carbonate</topic><topic>Catecholamine</topic><topic>cations</topic><topic>cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Dentistry</topic><topic>dopamine</topic><topic>Elastic Modulus - physiology</topic><topic>Electroplating - methods</topic><topic>Electrospinning</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>mechanical properties</topic><topic>Mineralization</topic><topic>modulus of elasticity</topic><topic>nanofibers</topic><topic>norepinephrine</topic><topic>osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>osteocalcin</topic><topic>Osteogenesis - physiology</topic><topic>osteopontin</topic><topic>pain</topic><topic>people</topic><topic>photoluminescence</topic><topic>polymerization</topic><topic>tissue culture</topic><topic>tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhand, Chetna</creatorcontrib><creatorcontrib>Ong, Seow Theng</creatorcontrib><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Diaz, Silvia Marrero</creatorcontrib><creatorcontrib>Venugopal, Jayarama Reddy</creatorcontrib><creatorcontrib>Navaneethan, Balchandar</creatorcontrib><creatorcontrib>Fazil, Mobashar H.U.T</creatorcontrib><creatorcontrib>Liu, Shouping</creatorcontrib><creatorcontrib>Seitz, Vera</creatorcontrib><creatorcontrib>Wintermantel, Erich</creatorcontrib><creatorcontrib>Beuerman, Roger W</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Verma, Navin K</creatorcontrib><creatorcontrib>Lakshminarayanan, Rajamani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhand, Chetna</au><au>Ong, Seow Theng</au><au>Dwivedi, Neeraj</au><au>Diaz, Silvia Marrero</au><au>Venugopal, Jayarama Reddy</au><au>Navaneethan, Balchandar</au><au>Fazil, Mobashar H.U.T</au><au>Liu, Shouping</au><au>Seitz, Vera</au><au>Wintermantel, Erich</au><au>Beuerman, Roger W</au><au>Ramakrishna, Seeram</au><au>Verma, Navin K</au><au>Lakshminarayanan, Rajamani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>104</volume><spage>323</spage><epage>338</epage><pages>323-338</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca2+ . The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3 . The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27475728</pmid><doi>10.1016/j.biomaterials.2016.07.007</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2016-10, Vol.104, p.323-338 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2000305403 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science ammonium carbonate Biomimetics - instrumentation Bone Bone Development - physiology bone formation bones Calcification, Physiologic - physiology calcium calcium carbonate Catecholamine cations cell adhesion Cell Adhesion - physiology Cell Differentiation Cell Proliferation Cells, Cultured Collagen Collagen - chemistry Cross-Linking Reagents - chemistry Crosslinking Dentistry dopamine Elastic Modulus - physiology Electroplating - methods Electrospinning Equipment Design Equipment Failure Analysis Humans mechanical properties Mineralization modulus of elasticity nanofibers norepinephrine osteoblasts Osteoblasts - cytology Osteoblasts - physiology osteocalcin Osteogenesis - physiology osteopontin pain people photoluminescence polymerization tissue culture tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds |
title | Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20in%20situ%20crosslinking%20and%20mineralization%20of%20electrospun%20collagen%20scaffolds%20for%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=Dhand,%20Chetna&rft.date=2016-10-01&rft.volume=104&rft.spage=323&rft.epage=338&rft.pages=323-338&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.07.007&rft_dat=%3Cproquest_cross%3E2000305403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811560307&rft_id=info:pmid/27475728&rft_els_id=1_s2_0_S0142961216303386&rfr_iscdi=true |