Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo

A Nafion and poly­(3,4-ethylenedioxythiophene) (PEDOT) containing composite polymer has been electropolymerized on carbon-fiber microelectrodes with the goal of creating a mechanically stable, robust, and controllable electrode coating that increases the selectivity and sensitivity of in vivo electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-03, Vol.87 (5), p.2600-2607
Hauptverfasser: Vreeland, Richard F, Atcherley, Christopher W, Russell, Wilfred S, Xie, Jennifer Y, Lu, Dong, Laude, Nicholas D, Porreca, Frank, Heien, Michael L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2607
container_issue 5
container_start_page 2600
container_title Analytical chemistry (Washington)
container_volume 87
creator Vreeland, Richard F
Atcherley, Christopher W
Russell, Wilfred S
Xie, Jennifer Y
Lu, Dong
Laude, Nicholas D
Porreca, Frank
Heien, Michael L
description A Nafion and poly­(3,4-ethylenedioxythiophene) (PEDOT) containing composite polymer has been electropolymerized on carbon-fiber microelectrodes with the goal of creating a mechanically stable, robust, and controllable electrode coating that increases the selectivity and sensitivity of in vivo electrochemical measurements. The coating is deposited on carbon-fiber microelectrodes by applying a triangle waveform from +1.5 V to −0.8 V and back in a dilute solution of ethylenedioxythiophene (EDOT) and Nafion in acetonitrile. Scanning electron microscopy demonstrated that the coating is uniform and ∼100 nm thick. Energy-dispersive X-ray spectroscopy demonstrated that both sulfur and fluorine are present in the coating, indicating the incorporation of PEDOT (poly­(3,4-ethylenedioxythiophene) and Nafion. Two types of PEDOT:Nafion coated electrodes were then analyzed electrochemically. PEDOT:Nafion-coated electrodes made using 200 μM EDOT exhibit a 10–90 response time of 0.46 ± 0.09 s versus 0.45 ± 0.11 s for an uncoated fiber in response to a 1.0 μM bolus of dopamine. The electrodes coated using a higher EDOT concentration (400 μM) are slower with a 10–90 response time of 0.84 ± 0.19 s, but display increased sensitivity to dopamine, at 46 ± 13 nA/μM, compared to 26 ± 6 nA/μM for the electrodes coated in 200 μM EDOT and 13 ± 2 nA/μM for an uncoated fiber. PEDOT:Nafion-coated electrodes were lowered into the nucleus accumbens of a rat, and both spontaneous and electrically evoked dopamine release were measured. In addition to improvements in sensitivity and selectivity, the coating dramatically reduces acute in vivo biofouling.
doi_str_mv 10.1021/ac502165f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000295214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1668271048</sourcerecordid><originalsourceid>FETCH-LOGICAL-a543t-f8454072adfebb4b778a66064e1e806de38d39d4fcc24f702906e33cd1d2bf073</originalsourceid><addsrcrecordid>eNqN0s1rFTEQAPAgin1WD_4DEhBBD6uTj012venr8wNKK1i9LtnsRFJ2N69JtuB_b5ZXi-jBniYMv0yGyRDylMFrBpy9MbYuQdXuHtmwmkOlmobfJxsAEBXXAEfkUUqXAIwBUw_JEa9Vy1WtN2R874MN095k349Iv-xOzi_enhnnw0y3JR-Sz0h3I9ocw4AlV-T8I1EXIv2Ka95fIz3BvJ7KpeDoGS4x5GjmNPmcMSbqZ_rdX4fH5IEzY8InN_GYfPuwu9h-qk7PP37evjutTC1Frlwjawmam8Fh38te68YoBUoiwwbUgKIZRDtIZy2XTgNvQaEQdmAD7x1ocUxeHuruY7haMOVu8sniOJoZw5I6XgbD25oz-V_KyqAEE0q3d6Cq4ZqBbO5CQdWtaNZen_9FL8MS5zKeVTGhQfBVvTooG0NKEV23j34y8WfHoFt3oLvdgWKf3VRc-gmHW_n70wt4cQDGpj9e-6fQL61mthI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661370327</pqid></control><display><type>article</type><title>Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo</title><source>MEDLINE</source><source>ACS Publications</source><creator>Vreeland, Richard F ; Atcherley, Christopher W ; Russell, Wilfred S ; Xie, Jennifer Y ; Lu, Dong ; Laude, Nicholas D ; Porreca, Frank ; Heien, Michael L</creator><creatorcontrib>Vreeland, Richard F ; Atcherley, Christopher W ; Russell, Wilfred S ; Xie, Jennifer Y ; Lu, Dong ; Laude, Nicholas D ; Porreca, Frank ; Heien, Michael L</creatorcontrib><description>A Nafion and poly­(3,4-ethylenedioxythiophene) (PEDOT) containing composite polymer has been electropolymerized on carbon-fiber microelectrodes with the goal of creating a mechanically stable, robust, and controllable electrode coating that increases the selectivity and sensitivity of in vivo electrochemical measurements. The coating is deposited on carbon-fiber microelectrodes by applying a triangle waveform from +1.5 V to −0.8 V and back in a dilute solution of ethylenedioxythiophene (EDOT) and Nafion in acetonitrile. Scanning electron microscopy demonstrated that the coating is uniform and ∼100 nm thick. Energy-dispersive X-ray spectroscopy demonstrated that both sulfur and fluorine are present in the coating, indicating the incorporation of PEDOT (poly­(3,4-ethylenedioxythiophene) and Nafion. Two types of PEDOT:Nafion coated electrodes were then analyzed electrochemically. PEDOT:Nafion-coated electrodes made using 200 μM EDOT exhibit a 10–90 response time of 0.46 ± 0.09 s versus 0.45 ± 0.11 s for an uncoated fiber in response to a 1.0 μM bolus of dopamine. The electrodes coated using a higher EDOT concentration (400 μM) are slower with a 10–90 response time of 0.84 ± 0.19 s, but display increased sensitivity to dopamine, at 46 ± 13 nA/μM, compared to 26 ± 6 nA/μM for the electrodes coated in 200 μM EDOT and 13 ± 2 nA/μM for an uncoated fiber. PEDOT:Nafion-coated electrodes were lowered into the nucleus accumbens of a rat, and both spontaneous and electrically evoked dopamine release were measured. In addition to improvements in sensitivity and selectivity, the coating dramatically reduces acute in vivo biofouling.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac502165f</identifier><identifier>PMID: 25692657</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetonitrile ; Analytical chemistry ; Animals ; Biocompatibility ; biofouling ; Biomedical materials ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Carbon - chemistry ; Carbon fibers ; Coatings ; composite polymers ; Dopamine ; Dopamine - analysis ; electrochemistry ; Electrodes ; energy-dispersive X-ray analysis ; Flow Injection Analysis ; fluorine ; Fluorocarbon Polymers - chemistry ; In vivo testing ; In vivo tests ; Male ; Microelectrodes ; Microscopy, Electron, Scanning ; Neurotransmitter Agents - analysis ; Neurotransmitters ; Nucleus Accumbens - metabolism ; Polymers - chemistry ; Prefrontal Cortex - metabolism ; Rats ; Rats, Sprague-Dawley ; Scanning electron microscopy ; sulfur ; Surgical implants</subject><ispartof>Analytical chemistry (Washington), 2015-03, Vol.87 (5), p.2600-2607</ispartof><rights>Copyright American Chemical Society Mar 3, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a543t-f8454072adfebb4b778a66064e1e806de38d39d4fcc24f702906e33cd1d2bf073</citedby><cites>FETCH-LOGICAL-a543t-f8454072adfebb4b778a66064e1e806de38d39d4fcc24f702906e33cd1d2bf073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac502165f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac502165f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25692657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vreeland, Richard F</creatorcontrib><creatorcontrib>Atcherley, Christopher W</creatorcontrib><creatorcontrib>Russell, Wilfred S</creatorcontrib><creatorcontrib>Xie, Jennifer Y</creatorcontrib><creatorcontrib>Lu, Dong</creatorcontrib><creatorcontrib>Laude, Nicholas D</creatorcontrib><creatorcontrib>Porreca, Frank</creatorcontrib><creatorcontrib>Heien, Michael L</creatorcontrib><title>Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A Nafion and poly­(3,4-ethylenedioxythiophene) (PEDOT) containing composite polymer has been electropolymerized on carbon-fiber microelectrodes with the goal of creating a mechanically stable, robust, and controllable electrode coating that increases the selectivity and sensitivity of in vivo electrochemical measurements. The coating is deposited on carbon-fiber microelectrodes by applying a triangle waveform from +1.5 V to −0.8 V and back in a dilute solution of ethylenedioxythiophene (EDOT) and Nafion in acetonitrile. Scanning electron microscopy demonstrated that the coating is uniform and ∼100 nm thick. Energy-dispersive X-ray spectroscopy demonstrated that both sulfur and fluorine are present in the coating, indicating the incorporation of PEDOT (poly­(3,4-ethylenedioxythiophene) and Nafion. Two types of PEDOT:Nafion coated electrodes were then analyzed electrochemically. PEDOT:Nafion-coated electrodes made using 200 μM EDOT exhibit a 10–90 response time of 0.46 ± 0.09 s versus 0.45 ± 0.11 s for an uncoated fiber in response to a 1.0 μM bolus of dopamine. The electrodes coated using a higher EDOT concentration (400 μM) are slower with a 10–90 response time of 0.84 ± 0.19 s, but display increased sensitivity to dopamine, at 46 ± 13 nA/μM, compared to 26 ± 6 nA/μM for the electrodes coated in 200 μM EDOT and 13 ± 2 nA/μM for an uncoated fiber. PEDOT:Nafion-coated electrodes were lowered into the nucleus accumbens of a rat, and both spontaneous and electrically evoked dopamine release were measured. In addition to improvements in sensitivity and selectivity, the coating dramatically reduces acute in vivo biofouling.</description><subject>acetonitrile</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>biofouling</subject><subject>Biomedical materials</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Carbon - chemistry</subject><subject>Carbon fibers</subject><subject>Coatings</subject><subject>composite polymers</subject><subject>Dopamine</subject><subject>Dopamine - analysis</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>energy-dispersive X-ray analysis</subject><subject>Flow Injection Analysis</subject><subject>fluorine</subject><subject>Fluorocarbon Polymers - chemistry</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Neurotransmitters</subject><subject>Nucleus Accumbens - metabolism</subject><subject>Polymers - chemistry</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Scanning electron microscopy</subject><subject>sulfur</subject><subject>Surgical implants</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0s1rFTEQAPAgin1WD_4DEhBBD6uTj012venr8wNKK1i9LtnsRFJ2N69JtuB_b5ZXi-jBniYMv0yGyRDylMFrBpy9MbYuQdXuHtmwmkOlmobfJxsAEBXXAEfkUUqXAIwBUw_JEa9Vy1WtN2R874MN095k349Iv-xOzi_enhnnw0y3JR-Sz0h3I9ocw4AlV-T8I1EXIv2Ka95fIz3BvJ7KpeDoGS4x5GjmNPmcMSbqZ_rdX4fH5IEzY8InN_GYfPuwu9h-qk7PP37evjutTC1Frlwjawmam8Fh38te68YoBUoiwwbUgKIZRDtIZy2XTgNvQaEQdmAD7x1ocUxeHuruY7haMOVu8sniOJoZw5I6XgbD25oz-V_KyqAEE0q3d6Cq4ZqBbO5CQdWtaNZen_9FL8MS5zKeVTGhQfBVvTooG0NKEV23j34y8WfHoFt3oLvdgWKf3VRc-gmHW_n70wt4cQDGpj9e-6fQL61mthI</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>Vreeland, Richard F</creator><creator>Atcherley, Christopher W</creator><creator>Russell, Wilfred S</creator><creator>Xie, Jennifer Y</creator><creator>Lu, Dong</creator><creator>Laude, Nicholas D</creator><creator>Porreca, Frank</creator><creator>Heien, Michael L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20150303</creationdate><title>Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo</title><author>Vreeland, Richard F ; Atcherley, Christopher W ; Russell, Wilfred S ; Xie, Jennifer Y ; Lu, Dong ; Laude, Nicholas D ; Porreca, Frank ; Heien, Michael L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a543t-f8454072adfebb4b778a66064e1e806de38d39d4fcc24f702906e33cd1d2bf073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acetonitrile</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>biofouling</topic><topic>Biomedical materials</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Carbon - chemistry</topic><topic>Carbon fibers</topic><topic>Coatings</topic><topic>composite polymers</topic><topic>Dopamine</topic><topic>Dopamine - analysis</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>energy-dispersive X-ray analysis</topic><topic>Flow Injection Analysis</topic><topic>fluorine</topic><topic>Fluorocarbon Polymers - chemistry</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Neurotransmitters</topic><topic>Nucleus Accumbens - metabolism</topic><topic>Polymers - chemistry</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Scanning electron microscopy</topic><topic>sulfur</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vreeland, Richard F</creatorcontrib><creatorcontrib>Atcherley, Christopher W</creatorcontrib><creatorcontrib>Russell, Wilfred S</creatorcontrib><creatorcontrib>Xie, Jennifer Y</creatorcontrib><creatorcontrib>Lu, Dong</creatorcontrib><creatorcontrib>Laude, Nicholas D</creatorcontrib><creatorcontrib>Porreca, Frank</creatorcontrib><creatorcontrib>Heien, Michael L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vreeland, Richard F</au><au>Atcherley, Christopher W</au><au>Russell, Wilfred S</au><au>Xie, Jennifer Y</au><au>Lu, Dong</au><au>Laude, Nicholas D</au><au>Porreca, Frank</au><au>Heien, Michael L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>87</volume><issue>5</issue><spage>2600</spage><epage>2607</epage><pages>2600-2607</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A Nafion and poly­(3,4-ethylenedioxythiophene) (PEDOT) containing composite polymer has been electropolymerized on carbon-fiber microelectrodes with the goal of creating a mechanically stable, robust, and controllable electrode coating that increases the selectivity and sensitivity of in vivo electrochemical measurements. The coating is deposited on carbon-fiber microelectrodes by applying a triangle waveform from +1.5 V to −0.8 V and back in a dilute solution of ethylenedioxythiophene (EDOT) and Nafion in acetonitrile. Scanning electron microscopy demonstrated that the coating is uniform and ∼100 nm thick. Energy-dispersive X-ray spectroscopy demonstrated that both sulfur and fluorine are present in the coating, indicating the incorporation of PEDOT (poly­(3,4-ethylenedioxythiophene) and Nafion. Two types of PEDOT:Nafion coated electrodes were then analyzed electrochemically. PEDOT:Nafion-coated electrodes made using 200 μM EDOT exhibit a 10–90 response time of 0.46 ± 0.09 s versus 0.45 ± 0.11 s for an uncoated fiber in response to a 1.0 μM bolus of dopamine. The electrodes coated using a higher EDOT concentration (400 μM) are slower with a 10–90 response time of 0.84 ± 0.19 s, but display increased sensitivity to dopamine, at 46 ± 13 nA/μM, compared to 26 ± 6 nA/μM for the electrodes coated in 200 μM EDOT and 13 ± 2 nA/μM for an uncoated fiber. PEDOT:Nafion-coated electrodes were lowered into the nucleus accumbens of a rat, and both spontaneous and electrically evoked dopamine release were measured. In addition to improvements in sensitivity and selectivity, the coating dramatically reduces acute in vivo biofouling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25692657</pmid><doi>10.1021/ac502165f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-03, Vol.87 (5), p.2600-2607
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2000295214
source MEDLINE; ACS Publications
subjects acetonitrile
Analytical chemistry
Animals
Biocompatibility
biofouling
Biomedical materials
Bridged Bicyclo Compounds, Heterocyclic - chemistry
Carbon - chemistry
Carbon fibers
Coatings
composite polymers
Dopamine
Dopamine - analysis
electrochemistry
Electrodes
energy-dispersive X-ray analysis
Flow Injection Analysis
fluorine
Fluorocarbon Polymers - chemistry
In vivo testing
In vivo tests
Male
Microelectrodes
Microscopy, Electron, Scanning
Neurotransmitter Agents - analysis
Neurotransmitters
Nucleus Accumbens - metabolism
Polymers - chemistry
Prefrontal Cortex - metabolism
Rats
Rats, Sprague-Dawley
Scanning electron microscopy
sulfur
Surgical implants
title Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20PEDOT:Nafion%20Composite%20Electrode%20Coatings%20for%20Selective%20Detection%20of%20Neurotransmitters%20in%20Vivo&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vreeland,%20Richard%20F&rft.date=2015-03-03&rft.volume=87&rft.issue=5&rft.spage=2600&rft.epage=2607&rft.pages=2600-2607&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac502165f&rft_dat=%3Cproquest_cross%3E1668271048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661370327&rft_id=info:pmid/25692657&rfr_iscdi=true