Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry

The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2013-08, Vol.85 (15), p.7512-7518
Hauptverfasser: Pfeuffer, Kevin P, Schaper, J. Niklas, Shelley, Jacob T, Ray, Steven J, Chan, George C.-Y, Bings, Nicolas H, Hieftje, Gary M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7518
container_issue 15
container_start_page 7512
container_title Analytical chemistry (Washington)
container_volume 85
creator Pfeuffer, Kevin P
Schaper, J. Niklas
Shelley, Jacob T
Ray, Steven J
Chan, George C.-Y
Bings, Nicolas H
Hieftje, Gary M
description The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (
doi_str_mv 10.1021/ac401524x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000265157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000265157</sourcerecordid><originalsourceid>FETCH-LOGICAL-a547t-6b351f4f45fe4a2309f776462e93dc133d940f129e7b07d9415d3f1f9320cfd43</originalsourceid><addsrcrecordid>eNqF0stu1DAUBmALgehQWPACyBJCgkXg-JoJu6hQZqQikAbWkSc5nrpK7NROCsO78K64TKkQLLo6tvX595WQpwxeM-DsjWklMMXl93tkkSsUernk98kCAETBS4Aj8iilCwDGgOmH5IiLJWRSLcjPlelDsTk3I3b0tA_fnN_RehpCGs8xupZ-jpjSHJHWdsK4y-ItrekKzRX6fk_fYXI7T22IdOOGsXfW5aCNyU2kaz_F0M3t5IKnxnd0PYwxXGWwDt79ML_Hnaf1sHXoJ_rRpEQ3I7Z52oBT3D8mD6zpEz65qcfk6-n7Lyer4uzTh_VJfVYYJcup0FuhmJVWKovScAGVLUstNcdKdC0ToqskWMYrLLdQ5g5TnbDMVoJDazspjsnLQ27e3uWMaWoGl1rse-MxzKnh-Sa5VkyVd1KmKy4EKMXvppIthebLUmf6_B96Eebo85mz4iAU1-w68NVBtTGkFNE2Y3SDifuGQXP9E5rbn5Dts5vEeTtgdyv_PH0GLw7AtOmv1f4L-gVJX7nd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420352612</pqid></control><display><type>article</type><title>Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry</title><source>ACS Publications</source><source>MEDLINE</source><creator>Pfeuffer, Kevin P ; Schaper, J. Niklas ; Shelley, Jacob T ; Ray, Steven J ; Chan, George C.-Y ; Bings, Nicolas H ; Hieftje, Gary M</creator><creatorcontrib>Pfeuffer, Kevin P ; Schaper, J. Niklas ; Shelley, Jacob T ; Ray, Steven J ; Chan, George C.-Y ; Bings, Nicolas H ; Hieftje, Gary M</creatorcontrib><description>The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (&lt;3% change at 450 K) by water vapor during solution–aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac401524x</identifier><identifier>PMID: 23808829</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Afterglows ; Atmospheric Pressure ; Channels ; Desorption ; Discharge ; Electric Conductivity ; Electrodes ; Equipment Design ; Fluid dynamics ; Geometry ; helium ; Ionization ; Ions ; Mass spectrometry ; Mass Spectrometry - instrumentation ; Pharmaceutical Preparations - chemistry ; protons ; Sampling ; spectrometers ; temperature ; water vapor</subject><ispartof>Analytical chemistry (Washington), 2013-08, Vol.85 (15), p.7512-7518</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 6, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a547t-6b351f4f45fe4a2309f776462e93dc133d940f129e7b07d9415d3f1f9320cfd43</citedby><cites>FETCH-LOGICAL-a547t-6b351f4f45fe4a2309f776462e93dc133d940f129e7b07d9415d3f1f9320cfd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac401524x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac401524x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23808829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfeuffer, Kevin P</creatorcontrib><creatorcontrib>Schaper, J. Niklas</creatorcontrib><creatorcontrib>Shelley, Jacob T</creatorcontrib><creatorcontrib>Ray, Steven J</creatorcontrib><creatorcontrib>Chan, George C.-Y</creatorcontrib><creatorcontrib>Bings, Nicolas H</creatorcontrib><creatorcontrib>Hieftje, Gary M</creatorcontrib><title>Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (&lt;3% change at 450 K) by water vapor during solution–aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.</description><subject>Aerosols</subject><subject>Afterglows</subject><subject>Atmospheric Pressure</subject><subject>Channels</subject><subject>Desorption</subject><subject>Discharge</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Fluid dynamics</subject><subject>Geometry</subject><subject>helium</subject><subject>Ionization</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - instrumentation</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>protons</subject><subject>Sampling</subject><subject>spectrometers</subject><subject>temperature</subject><subject>water vapor</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0stu1DAUBmALgehQWPACyBJCgkXg-JoJu6hQZqQikAbWkSc5nrpK7NROCsO78K64TKkQLLo6tvX595WQpwxeM-DsjWklMMXl93tkkSsUernk98kCAETBS4Aj8iilCwDGgOmH5IiLJWRSLcjPlelDsTk3I3b0tA_fnN_RehpCGs8xupZ-jpjSHJHWdsK4y-ItrekKzRX6fk_fYXI7T22IdOOGsXfW5aCNyU2kaz_F0M3t5IKnxnd0PYwxXGWwDt79ML_Hnaf1sHXoJ_rRpEQ3I7Z52oBT3D8mD6zpEz65qcfk6-n7Lyer4uzTh_VJfVYYJcup0FuhmJVWKovScAGVLUstNcdKdC0ToqskWMYrLLdQ5g5TnbDMVoJDazspjsnLQ27e3uWMaWoGl1rse-MxzKnh-Sa5VkyVd1KmKy4EKMXvppIthebLUmf6_B96Eebo85mz4iAU1-w68NVBtTGkFNE2Y3SDifuGQXP9E5rbn5Dts5vEeTtgdyv_PH0GLw7AtOmv1f4L-gVJX7nd</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Pfeuffer, Kevin P</creator><creator>Schaper, J. Niklas</creator><creator>Shelley, Jacob T</creator><creator>Ray, Steven J</creator><creator>Chan, George C.-Y</creator><creator>Bings, Nicolas H</creator><creator>Hieftje, Gary M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20130806</creationdate><title>Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry</title><author>Pfeuffer, Kevin P ; Schaper, J. Niklas ; Shelley, Jacob T ; Ray, Steven J ; Chan, George C.-Y ; Bings, Nicolas H ; Hieftje, Gary M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a547t-6b351f4f45fe4a2309f776462e93dc133d940f129e7b07d9415d3f1f9320cfd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>Afterglows</topic><topic>Atmospheric Pressure</topic><topic>Channels</topic><topic>Desorption</topic><topic>Discharge</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Fluid dynamics</topic><topic>Geometry</topic><topic>helium</topic><topic>Ionization</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - instrumentation</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>protons</topic><topic>Sampling</topic><topic>spectrometers</topic><topic>temperature</topic><topic>water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeuffer, Kevin P</creatorcontrib><creatorcontrib>Schaper, J. Niklas</creatorcontrib><creatorcontrib>Shelley, Jacob T</creatorcontrib><creatorcontrib>Ray, Steven J</creatorcontrib><creatorcontrib>Chan, George C.-Y</creatorcontrib><creatorcontrib>Bings, Nicolas H</creatorcontrib><creatorcontrib>Hieftje, Gary M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeuffer, Kevin P</au><au>Schaper, J. Niklas</au><au>Shelley, Jacob T</au><au>Ray, Steven J</au><au>Chan, George C.-Y</au><au>Bings, Nicolas H</au><au>Hieftje, Gary M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>85</volume><issue>15</issue><spage>7512</spage><epage>7518</epage><pages>7512-7518</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (&lt;3% change at 450 K) by water vapor during solution–aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23808829</pmid><doi>10.1021/ac401524x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2013-08, Vol.85 (15), p.7512-7518
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2000265157
source ACS Publications; MEDLINE
subjects Aerosols
Afterglows
Atmospheric Pressure
Channels
Desorption
Discharge
Electric Conductivity
Electrodes
Equipment Design
Fluid dynamics
Geometry
helium
Ionization
Ions
Mass spectrometry
Mass Spectrometry - instrumentation
Pharmaceutical Preparations - chemistry
protons
Sampling
spectrometers
temperature
water vapor
title Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halo-Shaped%20Flowing%20Atmospheric%20Pressure%20Afterglow:%20A%20Heavenly%20Design%20for%20Simplified%20Sample%20Introduction%20and%20Improved%20Ionization%20in%20Ambient%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Pfeuffer,%20Kevin%20P&rft.date=2013-08-06&rft.volume=85&rft.issue=15&rft.spage=7512&rft.epage=7518&rft.pages=7512-7518&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac401524x&rft_dat=%3Cproquest_cross%3E2000265157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420352612&rft_id=info:pmid/23808829&rfr_iscdi=true