Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress
Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER s...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 2016-06, Vol.32, p.39-45 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | The Journal of nutritional biochemistry |
container_volume | 32 |
creator | Snodgrass, Ryan G. Huang, Shurong Namgaladze, Dmitry Jandali, Ola Shao, Tiffany Sama, Spandana Brüne, Bernhard Hwang, Daniel H. |
description | Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume. |
doi_str_mv | 10.1016/j.jnutbio.2016.01.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000200984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955286316300080</els_id><sourcerecordid>1811906470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</originalsourceid><addsrcrecordid>eNqFUcuOEzEQtBCIDQufAJojlwn2jF9zQmiXl7QSFzhbvXaHOPLYwfasyIF_xyFZrpFacnerukquIuQ1o2tGmXy3W-_iUu99Wg9tXFPWij4hK6bV2HPN1VOyopMQ_aDleEVelLKjlA5cyOfkalCMD2oUK_LnNtlUYIu_AWPytgPrXQfRdXsIs6-Pm4zW73OyEMKhm5NbAlRsTUz20Bqw1T9A9Sl2PrbTXLu6zWn5ue0wurQPUOZGlbERLmGZu1IzlvKSPNtAKPjq_F6TH58-fr_50t99-_z15sNdb7nStQcKWsLEGTohHI5oR8s2Vo-TYlJOEyjRNpZpVFyNlDOYlOIShnEQaiNhvCZvT7ztC78WLNXMvlgMASKmpZjhaA2lk-YXoUwzNlHJFb0MVRNtftN_rOIEtTmVknFj9tnPkA-GUXPM0-zMOU9zzNNQ1uoo8eYssdzP6P5fPQbYAO9PAGz2PXjMpliP0aLzLbJqXPIXJP4C9yS1yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790456084</pqid></control><display><type>article</type><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</creator><creatorcontrib>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</creatorcontrib><description>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</description><identifier>ISSN: 0955-2863</identifier><identifier>EISSN: 1873-4847</identifier><identifier>DOI: 10.1016/j.jnutbio.2016.01.010</identifier><identifier>PMID: 27142735</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>agonists ; anti-inflammatory activity ; Anti-Inflammatory Agents, Non-Steroidal - metabolism ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; Biomarkers - metabolism ; Cell Line ; DHA ; dietary fat ; docosahexaenoic acid ; Docosahexaenoic Acids - metabolism ; Docosahexaenoic Acids - therapeutic use ; endoplasmic reticulum ; Endoplasmic Reticulum Stress - drug effects ; Enzyme Inhibitors - pharmacology ; ER stress ; Fatty acid ; Histone Deacetylase Inhibitors - pharmacology ; homeostasis ; Humans ; Immunomodulation ; Inflammasome ; Inflammasomes - drug effects ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Inflammation ; interleukin-1beta ; Interleukin-1beta - agonists ; Interleukin-1beta - metabolism ; Interleukin-1beta - secretion ; Ligands ; Lipopeptides - pharmacology ; Lipopolysaccharides - toxicity ; Monocyte ; monocytes ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - metabolism ; Monocytes - secretion ; palmitic acid ; Palmitic Acid - adverse effects ; Palmitic Acid - metabolism ; Phenylbutyrates - pharmacology ; phosphorylation ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists & inhibitors ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; secretion ; Signal Transduction - drug effects ; stress response ; Thapsigargin - pharmacology ; Toll-like receptor 2 ; Toll-Like Receptor 2 - agonists ; Toll-Like Receptor 2 - antagonists & inhibitors ; Toll-Like Receptor 2 - metabolism ; Toll-like receptor 4 ; Toll-Like Receptor 4 - agonists ; Toll-Like Receptor 4 - antagonists & inhibitors ; Toll-Like Receptor 4 - metabolism ; tunicamycin</subject><ispartof>The Journal of nutritional biochemistry, 2016-06, Vol.32, p.39-45</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</citedby><cites>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955286316300080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27142735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Huang, Shurong</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Jandali, Ola</creatorcontrib><creatorcontrib>Shao, Tiffany</creatorcontrib><creatorcontrib>Sama, Spandana</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><creatorcontrib>Hwang, Daniel H.</creatorcontrib><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><title>The Journal of nutritional biochemistry</title><addtitle>J Nutr Biochem</addtitle><description>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</description><subject>agonists</subject><subject>anti-inflammatory activity</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - metabolism</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>Biomarkers - metabolism</subject><subject>Cell Line</subject><subject>DHA</subject><subject>dietary fat</subject><subject>docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Docosahexaenoic Acids - therapeutic use</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ER stress</subject><subject>Fatty acid</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>homeostasis</subject><subject>Humans</subject><subject>Immunomodulation</subject><subject>Inflammasome</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>interleukin-1beta</subject><subject>Interleukin-1beta - agonists</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukin-1beta - secretion</subject><subject>Ligands</subject><subject>Lipopeptides - pharmacology</subject><subject>Lipopolysaccharides - toxicity</subject><subject>Monocyte</subject><subject>monocytes</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - secretion</subject><subject>palmitic acid</subject><subject>Palmitic Acid - adverse effects</subject><subject>Palmitic Acid - metabolism</subject><subject>Phenylbutyrates - pharmacology</subject><subject>phosphorylation</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists & inhibitors</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>secretion</subject><subject>Signal Transduction - drug effects</subject><subject>stress response</subject><subject>Thapsigargin - pharmacology</subject><subject>Toll-like receptor 2</subject><subject>Toll-Like Receptor 2 - agonists</subject><subject>Toll-Like Receptor 2 - antagonists & inhibitors</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptor 4</subject><subject>Toll-Like Receptor 4 - agonists</subject><subject>Toll-Like Receptor 4 - antagonists & inhibitors</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>tunicamycin</subject><issn>0955-2863</issn><issn>1873-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuOEzEQtBCIDQufAJojlwn2jF9zQmiXl7QSFzhbvXaHOPLYwfasyIF_xyFZrpFacnerukquIuQ1o2tGmXy3W-_iUu99Wg9tXFPWij4hK6bV2HPN1VOyopMQ_aDleEVelLKjlA5cyOfkalCMD2oUK_LnNtlUYIu_AWPytgPrXQfRdXsIs6-Pm4zW73OyEMKhm5NbAlRsTUz20Bqw1T9A9Sl2PrbTXLu6zWn5ue0wurQPUOZGlbERLmGZu1IzlvKSPNtAKPjq_F6TH58-fr_50t99-_z15sNdb7nStQcKWsLEGTohHI5oR8s2Vo-TYlJOEyjRNpZpVFyNlDOYlOIShnEQaiNhvCZvT7ztC78WLNXMvlgMASKmpZjhaA2lk-YXoUwzNlHJFb0MVRNtftN_rOIEtTmVknFj9tnPkA-GUXPM0-zMOU9zzNNQ1uoo8eYssdzP6P5fPQbYAO9PAGz2PXjMpliP0aLzLbJqXPIXJP4C9yS1yw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Snodgrass, Ryan G.</creator><creator>Huang, Shurong</creator><creator>Namgaladze, Dmitry</creator><creator>Jandali, Ola</creator><creator>Shao, Tiffany</creator><creator>Sama, Spandana</creator><creator>Brüne, Bernhard</creator><creator>Hwang, Daniel H.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TS</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201606</creationdate><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><author>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>agonists</topic><topic>anti-inflammatory activity</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - metabolism</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>Biomarkers - metabolism</topic><topic>Cell Line</topic><topic>DHA</topic><topic>dietary fat</topic><topic>docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Docosahexaenoic Acids - therapeutic use</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ER stress</topic><topic>Fatty acid</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>homeostasis</topic><topic>Humans</topic><topic>Immunomodulation</topic><topic>Inflammasome</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>interleukin-1beta</topic><topic>Interleukin-1beta - agonists</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukin-1beta - secretion</topic><topic>Ligands</topic><topic>Lipopeptides - pharmacology</topic><topic>Lipopolysaccharides - toxicity</topic><topic>Monocyte</topic><topic>monocytes</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - secretion</topic><topic>palmitic acid</topic><topic>Palmitic Acid - adverse effects</topic><topic>Palmitic Acid - metabolism</topic><topic>Phenylbutyrates - pharmacology</topic><topic>phosphorylation</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists & inhibitors</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>secretion</topic><topic>Signal Transduction - drug effects</topic><topic>stress response</topic><topic>Thapsigargin - pharmacology</topic><topic>Toll-like receptor 2</topic><topic>Toll-Like Receptor 2 - agonists</topic><topic>Toll-Like Receptor 2 - antagonists & inhibitors</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptor 4</topic><topic>Toll-Like Receptor 4 - agonists</topic><topic>Toll-Like Receptor 4 - antagonists & inhibitors</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>tunicamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Huang, Shurong</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Jandali, Ola</creatorcontrib><creatorcontrib>Shao, Tiffany</creatorcontrib><creatorcontrib>Sama, Spandana</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><creatorcontrib>Hwang, Daniel H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Journal of nutritional biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snodgrass, Ryan G.</au><au>Huang, Shurong</au><au>Namgaladze, Dmitry</au><au>Jandali, Ola</au><au>Shao, Tiffany</au><au>Sama, Spandana</au><au>Brüne, Bernhard</au><au>Hwang, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</atitle><jtitle>The Journal of nutritional biochemistry</jtitle><addtitle>J Nutr Biochem</addtitle><date>2016-06</date><risdate>2016</risdate><volume>32</volume><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0955-2863</issn><eissn>1873-4847</eissn><abstract>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27142735</pmid><doi>10.1016/j.jnutbio.2016.01.010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-2863 |
ispartof | The Journal of nutritional biochemistry, 2016-06, Vol.32, p.39-45 |
issn | 0955-2863 1873-4847 |
language | eng |
recordid | cdi_proquest_miscellaneous_2000200984 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | agonists anti-inflammatory activity Anti-Inflammatory Agents, Non-Steroidal - metabolism Anti-Inflammatory Agents, Non-Steroidal - therapeutic use Biomarkers - metabolism Cell Line DHA dietary fat docosahexaenoic acid Docosahexaenoic Acids - metabolism Docosahexaenoic Acids - therapeutic use endoplasmic reticulum Endoplasmic Reticulum Stress - drug effects Enzyme Inhibitors - pharmacology ER stress Fatty acid Histone Deacetylase Inhibitors - pharmacology homeostasis Humans Immunomodulation Inflammasome Inflammasomes - drug effects Inflammasomes - immunology Inflammasomes - metabolism Inflammation interleukin-1beta Interleukin-1beta - agonists Interleukin-1beta - metabolism Interleukin-1beta - secretion Ligands Lipopeptides - pharmacology Lipopolysaccharides - toxicity Monocyte monocytes Monocytes - drug effects Monocytes - immunology Monocytes - metabolism Monocytes - secretion palmitic acid Palmitic Acid - adverse effects Palmitic Acid - metabolism Phenylbutyrates - pharmacology phosphorylation Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists & inhibitors Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism secretion Signal Transduction - drug effects stress response Thapsigargin - pharmacology Toll-like receptor 2 Toll-Like Receptor 2 - agonists Toll-Like Receptor 2 - antagonists & inhibitors Toll-Like Receptor 2 - metabolism Toll-like receptor 4 Toll-Like Receptor 4 - agonists Toll-Like Receptor 4 - antagonists & inhibitors Toll-Like Receptor 4 - metabolism tunicamycin |
title | Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Docosahexaenoic%20acid%20and%20palmitic%20acid%20reciprocally%20modulate%20monocyte%20activation%20in%20part%20through%20endoplasmic%20reticulum%20stress&rft.jtitle=The%20Journal%20of%20nutritional%20biochemistry&rft.au=Snodgrass,%20Ryan%20G.&rft.date=2016-06&rft.volume=32&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0955-2863&rft.eissn=1873-4847&rft_id=info:doi/10.1016/j.jnutbio.2016.01.010&rft_dat=%3Cproquest_cross%3E1811906470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790456084&rft_id=info:pmid/27142735&rft_els_id=S0955286316300080&rfr_iscdi=true |