Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress

Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutritional biochemistry 2016-06, Vol.32, p.39-45
Hauptverfasser: Snodgrass, Ryan G., Huang, Shurong, Namgaladze, Dmitry, Jandali, Ola, Shao, Tiffany, Sama, Spandana, Brüne, Bernhard, Hwang, Daniel H.
Format: Artikel
Sprache:eng
Schlagworte:
DHA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 39
container_title The Journal of nutritional biochemistry
container_volume 32
creator Snodgrass, Ryan G.
Huang, Shurong
Namgaladze, Dmitry
Jandali, Ola
Shao, Tiffany
Sama, Spandana
Brüne, Bernhard
Hwang, Daniel H.
description Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.
doi_str_mv 10.1016/j.jnutbio.2016.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000200984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955286316300080</els_id><sourcerecordid>1811906470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</originalsourceid><addsrcrecordid>eNqFUcuOEzEQtBCIDQufAJojlwn2jF9zQmiXl7QSFzhbvXaHOPLYwfasyIF_xyFZrpFacnerukquIuQ1o2tGmXy3W-_iUu99Wg9tXFPWij4hK6bV2HPN1VOyopMQ_aDleEVelLKjlA5cyOfkalCMD2oUK_LnNtlUYIu_AWPytgPrXQfRdXsIs6-Pm4zW73OyEMKhm5NbAlRsTUz20Bqw1T9A9Sl2PrbTXLu6zWn5ue0wurQPUOZGlbERLmGZu1IzlvKSPNtAKPjq_F6TH58-fr_50t99-_z15sNdb7nStQcKWsLEGTohHI5oR8s2Vo-TYlJOEyjRNpZpVFyNlDOYlOIShnEQaiNhvCZvT7ztC78WLNXMvlgMASKmpZjhaA2lk-YXoUwzNlHJFb0MVRNtftN_rOIEtTmVknFj9tnPkA-GUXPM0-zMOU9zzNNQ1uoo8eYssdzP6P5fPQbYAO9PAGz2PXjMpliP0aLzLbJqXPIXJP4C9yS1yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790456084</pqid></control><display><type>article</type><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</creator><creatorcontrib>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</creatorcontrib><description>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</description><identifier>ISSN: 0955-2863</identifier><identifier>EISSN: 1873-4847</identifier><identifier>DOI: 10.1016/j.jnutbio.2016.01.010</identifier><identifier>PMID: 27142735</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>agonists ; anti-inflammatory activity ; Anti-Inflammatory Agents, Non-Steroidal - metabolism ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; Biomarkers - metabolism ; Cell Line ; DHA ; dietary fat ; docosahexaenoic acid ; Docosahexaenoic Acids - metabolism ; Docosahexaenoic Acids - therapeutic use ; endoplasmic reticulum ; Endoplasmic Reticulum Stress - drug effects ; Enzyme Inhibitors - pharmacology ; ER stress ; Fatty acid ; Histone Deacetylase Inhibitors - pharmacology ; homeostasis ; Humans ; Immunomodulation ; Inflammasome ; Inflammasomes - drug effects ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Inflammation ; interleukin-1beta ; Interleukin-1beta - agonists ; Interleukin-1beta - metabolism ; Interleukin-1beta - secretion ; Ligands ; Lipopeptides - pharmacology ; Lipopolysaccharides - toxicity ; Monocyte ; monocytes ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - metabolism ; Monocytes - secretion ; palmitic acid ; Palmitic Acid - adverse effects ; Palmitic Acid - metabolism ; Phenylbutyrates - pharmacology ; phosphorylation ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists &amp; inhibitors ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; secretion ; Signal Transduction - drug effects ; stress response ; Thapsigargin - pharmacology ; Toll-like receptor 2 ; Toll-Like Receptor 2 - agonists ; Toll-Like Receptor 2 - antagonists &amp; inhibitors ; Toll-Like Receptor 2 - metabolism ; Toll-like receptor 4 ; Toll-Like Receptor 4 - agonists ; Toll-Like Receptor 4 - antagonists &amp; inhibitors ; Toll-Like Receptor 4 - metabolism ; tunicamycin</subject><ispartof>The Journal of nutritional biochemistry, 2016-06, Vol.32, p.39-45</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</citedby><cites>FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955286316300080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27142735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Huang, Shurong</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Jandali, Ola</creatorcontrib><creatorcontrib>Shao, Tiffany</creatorcontrib><creatorcontrib>Sama, Spandana</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><creatorcontrib>Hwang, Daniel H.</creatorcontrib><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><title>The Journal of nutritional biochemistry</title><addtitle>J Nutr Biochem</addtitle><description>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</description><subject>agonists</subject><subject>anti-inflammatory activity</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - metabolism</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>Biomarkers - metabolism</subject><subject>Cell Line</subject><subject>DHA</subject><subject>dietary fat</subject><subject>docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Docosahexaenoic Acids - therapeutic use</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ER stress</subject><subject>Fatty acid</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>homeostasis</subject><subject>Humans</subject><subject>Immunomodulation</subject><subject>Inflammasome</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>interleukin-1beta</subject><subject>Interleukin-1beta - agonists</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukin-1beta - secretion</subject><subject>Ligands</subject><subject>Lipopeptides - pharmacology</subject><subject>Lipopolysaccharides - toxicity</subject><subject>Monocyte</subject><subject>monocytes</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - secretion</subject><subject>palmitic acid</subject><subject>Palmitic Acid - adverse effects</subject><subject>Palmitic Acid - metabolism</subject><subject>Phenylbutyrates - pharmacology</subject><subject>phosphorylation</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists &amp; inhibitors</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>secretion</subject><subject>Signal Transduction - drug effects</subject><subject>stress response</subject><subject>Thapsigargin - pharmacology</subject><subject>Toll-like receptor 2</subject><subject>Toll-Like Receptor 2 - agonists</subject><subject>Toll-Like Receptor 2 - antagonists &amp; inhibitors</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptor 4</subject><subject>Toll-Like Receptor 4 - agonists</subject><subject>Toll-Like Receptor 4 - antagonists &amp; inhibitors</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>tunicamycin</subject><issn>0955-2863</issn><issn>1873-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuOEzEQtBCIDQufAJojlwn2jF9zQmiXl7QSFzhbvXaHOPLYwfasyIF_xyFZrpFacnerukquIuQ1o2tGmXy3W-_iUu99Wg9tXFPWij4hK6bV2HPN1VOyopMQ_aDleEVelLKjlA5cyOfkalCMD2oUK_LnNtlUYIu_AWPytgPrXQfRdXsIs6-Pm4zW73OyEMKhm5NbAlRsTUz20Bqw1T9A9Sl2PrbTXLu6zWn5ue0wurQPUOZGlbERLmGZu1IzlvKSPNtAKPjq_F6TH58-fr_50t99-_z15sNdb7nStQcKWsLEGTohHI5oR8s2Vo-TYlJOEyjRNpZpVFyNlDOYlOIShnEQaiNhvCZvT7ztC78WLNXMvlgMASKmpZjhaA2lk-YXoUwzNlHJFb0MVRNtftN_rOIEtTmVknFj9tnPkA-GUXPM0-zMOU9zzNNQ1uoo8eYssdzP6P5fPQbYAO9PAGz2PXjMpliP0aLzLbJqXPIXJP4C9yS1yw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Snodgrass, Ryan G.</creator><creator>Huang, Shurong</creator><creator>Namgaladze, Dmitry</creator><creator>Jandali, Ola</creator><creator>Shao, Tiffany</creator><creator>Sama, Spandana</creator><creator>Brüne, Bernhard</creator><creator>Hwang, Daniel H.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TS</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201606</creationdate><title>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</title><author>Snodgrass, Ryan G. ; Huang, Shurong ; Namgaladze, Dmitry ; Jandali, Ola ; Shao, Tiffany ; Sama, Spandana ; Brüne, Bernhard ; Hwang, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a0a86a941ed55de3ec3c1fc839716699a75c3cc18e7473041a97746a23257f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>agonists</topic><topic>anti-inflammatory activity</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - metabolism</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>Biomarkers - metabolism</topic><topic>Cell Line</topic><topic>DHA</topic><topic>dietary fat</topic><topic>docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Docosahexaenoic Acids - therapeutic use</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ER stress</topic><topic>Fatty acid</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>homeostasis</topic><topic>Humans</topic><topic>Immunomodulation</topic><topic>Inflammasome</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>interleukin-1beta</topic><topic>Interleukin-1beta - agonists</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukin-1beta - secretion</topic><topic>Ligands</topic><topic>Lipopeptides - pharmacology</topic><topic>Lipopolysaccharides - toxicity</topic><topic>Monocyte</topic><topic>monocytes</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - secretion</topic><topic>palmitic acid</topic><topic>Palmitic Acid - adverse effects</topic><topic>Palmitic Acid - metabolism</topic><topic>Phenylbutyrates - pharmacology</topic><topic>phosphorylation</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists &amp; inhibitors</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>secretion</topic><topic>Signal Transduction - drug effects</topic><topic>stress response</topic><topic>Thapsigargin - pharmacology</topic><topic>Toll-like receptor 2</topic><topic>Toll-Like Receptor 2 - agonists</topic><topic>Toll-Like Receptor 2 - antagonists &amp; inhibitors</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptor 4</topic><topic>Toll-Like Receptor 4 - agonists</topic><topic>Toll-Like Receptor 4 - antagonists &amp; inhibitors</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>tunicamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Huang, Shurong</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Jandali, Ola</creatorcontrib><creatorcontrib>Shao, Tiffany</creatorcontrib><creatorcontrib>Sama, Spandana</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><creatorcontrib>Hwang, Daniel H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Physical Education Index</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Journal of nutritional biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snodgrass, Ryan G.</au><au>Huang, Shurong</au><au>Namgaladze, Dmitry</au><au>Jandali, Ola</au><au>Shao, Tiffany</au><au>Sama, Spandana</au><au>Brüne, Bernhard</au><au>Hwang, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress</atitle><jtitle>The Journal of nutritional biochemistry</jtitle><addtitle>J Nutr Biochem</addtitle><date>2016-06</date><risdate>2016</risdate><volume>32</volume><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0955-2863</issn><eissn>1873-4847</eissn><abstract>Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27142735</pmid><doi>10.1016/j.jnutbio.2016.01.010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-2863
ispartof The Journal of nutritional biochemistry, 2016-06, Vol.32, p.39-45
issn 0955-2863
1873-4847
language eng
recordid cdi_proquest_miscellaneous_2000200984
source MEDLINE; Elsevier ScienceDirect Journals
subjects agonists
anti-inflammatory activity
Anti-Inflammatory Agents, Non-Steroidal - metabolism
Anti-Inflammatory Agents, Non-Steroidal - therapeutic use
Biomarkers - metabolism
Cell Line
DHA
dietary fat
docosahexaenoic acid
Docosahexaenoic Acids - metabolism
Docosahexaenoic Acids - therapeutic use
endoplasmic reticulum
Endoplasmic Reticulum Stress - drug effects
Enzyme Inhibitors - pharmacology
ER stress
Fatty acid
Histone Deacetylase Inhibitors - pharmacology
homeostasis
Humans
Immunomodulation
Inflammasome
Inflammasomes - drug effects
Inflammasomes - immunology
Inflammasomes - metabolism
Inflammation
interleukin-1beta
Interleukin-1beta - agonists
Interleukin-1beta - metabolism
Interleukin-1beta - secretion
Ligands
Lipopeptides - pharmacology
Lipopolysaccharides - toxicity
Monocyte
monocytes
Monocytes - drug effects
Monocytes - immunology
Monocytes - metabolism
Monocytes - secretion
palmitic acid
Palmitic Acid - adverse effects
Palmitic Acid - metabolism
Phenylbutyrates - pharmacology
phosphorylation
Sarcoplasmic Reticulum Calcium-Transporting ATPases - antagonists & inhibitors
Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism
secretion
Signal Transduction - drug effects
stress response
Thapsigargin - pharmacology
Toll-like receptor 2
Toll-Like Receptor 2 - agonists
Toll-Like Receptor 2 - antagonists & inhibitors
Toll-Like Receptor 2 - metabolism
Toll-like receptor 4
Toll-Like Receptor 4 - agonists
Toll-Like Receptor 4 - antagonists & inhibitors
Toll-Like Receptor 4 - metabolism
tunicamycin
title Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Docosahexaenoic%20acid%20and%20palmitic%20acid%20reciprocally%20modulate%20monocyte%20activation%20in%20part%20through%20endoplasmic%20reticulum%20stress&rft.jtitle=The%20Journal%20of%20nutritional%20biochemistry&rft.au=Snodgrass,%20Ryan%20G.&rft.date=2016-06&rft.volume=32&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0955-2863&rft.eissn=1873-4847&rft_id=info:doi/10.1016/j.jnutbio.2016.01.010&rft_dat=%3Cproquest_cross%3E1811906470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790456084&rft_id=info:pmid/27142735&rft_els_id=S0955286316300080&rfr_iscdi=true