Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice

Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2016-05, Vol.86 (4), p.308-321
Hauptverfasser: Cao, Huasheng, Zhuo, Lin, Su, Yuan, Sun, Linxiao, Wang, Xuemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 4
container_start_page 308
container_title The Plant journal : for cell and molecular biology
container_volume 86
creator Cao, Huasheng
Zhuo, Lin
Su, Yuan
Sun, Linxiao
Wang, Xuemin
description Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering. Significance Statement Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.
doi_str_mv 10.1111/tpj.13165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000165603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4097003361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</originalsourceid><addsrcrecordid>eNqF0c1qFTEYBuAgFnusLrwBCbjRxbT5z2QpB_9KURcV3A2Zb754cpiZjJMZpDsvwWv0Skw9bReCNBCSkIcXkpeQZ5yd8jLOlml_yiU3-gHZcGl0Jbn8-pBsmDOssoqLY_I45z1j3EqjHpFjYZzjyrkN2X9M4--fv_KEEEMEOu1SLrOPk89It5z6EBCWTHPsI6SRdjEvc2zXJZaDHzs6IOz8GMH3tNzg-G3Z0TiWPQ50TB1mmgKdI-ATchR8n_HpzXpCvrx9c7l9X118evdh-_qiAi2UroQ2QYUOQ2cCgBPWai4AW2i96aDDuha6dkq6VkrQ0FmFWjJtAUwrlKzlCXl5yJ3m9H3FvDRDzIB970dMa24EKx9htGHyXsprVhurmdH3U-ucNkoIW-iLf-g-rfNY3nyt6vIkwVlRrw4K5pTzjKGZ5jj4-arhrLmutSm1Nn9rLfb5TeLaDtjdydseCzg7gB-xx6v_JzWXn88PkX8AftCs4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798927210</pqid></control><display><type>article</type><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>IngentaConnect Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB Electronic Journals Library</source><creator>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</creator><creatorcontrib>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</creatorcontrib><description>Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering. Significance Statement Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13165</identifier><identifier>PMID: 26991499</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biological Transport ; cell walls ; Cellulose ; diacylglycerols ; galactolipids ; Gene Expression Regulation, Plant ; Genes ; hemicellulose ; non‐specific phospholipase C ; Oryza - enzymology ; Oryza - metabolism ; Oryza sativa ; phosphatidic acid ; phospholipids ; plant growth ; Plant Proteins - antagonists &amp; inhibitors ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Proteins - physiology ; Plant Stems - enzymology ; Plant Stems - metabolism ; rice ; rice hulls ; RNA Interference ; sclerenchyma ; secondary cell wall ; seed shattering ; silicon ; Silicon - metabolism ; silicon distribution ; stem nodes ; strength (mechanics) ; stress response ; Type C Phospholipases - antagonists &amp; inhibitors ; Type C Phospholipases - genetics ; Type C Phospholipases - metabolism ; Type C Phospholipases - physiology</subject><ispartof>The Plant journal : for cell and molecular biology, 2016-05, Vol.86 (4), p.308-321</ispartof><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd</rights><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</citedby><cites>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</cites><orcidid>0000-0002-6251-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26991499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Huasheng</creatorcontrib><creatorcontrib>Zhuo, Lin</creatorcontrib><creatorcontrib>Su, Yuan</creatorcontrib><creatorcontrib>Sun, Linxiao</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering. Significance Statement Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</description><subject>Biological Transport</subject><subject>cell walls</subject><subject>Cellulose</subject><subject>diacylglycerols</subject><subject>galactolipids</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>hemicellulose</subject><subject>non‐specific phospholipase C</subject><subject>Oryza - enzymology</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>phosphatidic acid</subject><subject>phospholipids</subject><subject>plant growth</subject><subject>Plant Proteins - antagonists &amp; inhibitors</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - physiology</subject><subject>Plant Stems - enzymology</subject><subject>Plant Stems - metabolism</subject><subject>rice</subject><subject>rice hulls</subject><subject>RNA Interference</subject><subject>sclerenchyma</subject><subject>secondary cell wall</subject><subject>seed shattering</subject><subject>silicon</subject><subject>Silicon - metabolism</subject><subject>silicon distribution</subject><subject>stem nodes</subject><subject>strength (mechanics)</subject><subject>stress response</subject><subject>Type C Phospholipases - antagonists &amp; inhibitors</subject><subject>Type C Phospholipases - genetics</subject><subject>Type C Phospholipases - metabolism</subject><subject>Type C Phospholipases - physiology</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1qFTEYBuAgFnusLrwBCbjRxbT5z2QpB_9KURcV3A2Zb754cpiZjJMZpDsvwWv0Skw9bReCNBCSkIcXkpeQZ5yd8jLOlml_yiU3-gHZcGl0Jbn8-pBsmDOssoqLY_I45z1j3EqjHpFjYZzjyrkN2X9M4--fv_KEEEMEOu1SLrOPk89It5z6EBCWTHPsI6SRdjEvc2zXJZaDHzs6IOz8GMH3tNzg-G3Z0TiWPQ50TB1mmgKdI-ATchR8n_HpzXpCvrx9c7l9X118evdh-_qiAi2UroQ2QYUOQ2cCgBPWai4AW2i96aDDuha6dkq6VkrQ0FmFWjJtAUwrlKzlCXl5yJ3m9H3FvDRDzIB970dMa24EKx9htGHyXsprVhurmdH3U-ucNkoIW-iLf-g-rfNY3nyt6vIkwVlRrw4K5pTzjKGZ5jj4-arhrLmutSm1Nn9rLfb5TeLaDtjdydseCzg7gB-xx6v_JzWXn88PkX8AftCs4w</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Cao, Huasheng</creator><creator>Zhuo, Lin</creator><creator>Su, Yuan</creator><creator>Sun, Linxiao</creator><creator>Wang, Xuemin</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6251-6745</orcidid></search><sort><creationdate>201605</creationdate><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><author>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological Transport</topic><topic>cell walls</topic><topic>Cellulose</topic><topic>diacylglycerols</topic><topic>galactolipids</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>hemicellulose</topic><topic>non‐specific phospholipase C</topic><topic>Oryza - enzymology</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>phosphatidic acid</topic><topic>phospholipids</topic><topic>plant growth</topic><topic>Plant Proteins - antagonists &amp; inhibitors</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - physiology</topic><topic>Plant Stems - enzymology</topic><topic>Plant Stems - metabolism</topic><topic>rice</topic><topic>rice hulls</topic><topic>RNA Interference</topic><topic>sclerenchyma</topic><topic>secondary cell wall</topic><topic>seed shattering</topic><topic>silicon</topic><topic>Silicon - metabolism</topic><topic>silicon distribution</topic><topic>stem nodes</topic><topic>strength (mechanics)</topic><topic>stress response</topic><topic>Type C Phospholipases - antagonists &amp; inhibitors</topic><topic>Type C Phospholipases - genetics</topic><topic>Type C Phospholipases - metabolism</topic><topic>Type C Phospholipases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Huasheng</creatorcontrib><creatorcontrib>Zhuo, Lin</creatorcontrib><creatorcontrib>Su, Yuan</creatorcontrib><creatorcontrib>Sun, Linxiao</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Huasheng</au><au>Zhuo, Lin</au><au>Su, Yuan</au><au>Sun, Linxiao</au><au>Wang, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016-05</date><risdate>2016</risdate><volume>86</volume><issue>4</issue><spage>308</spage><epage>321</epage><pages>308-321</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering. Significance Statement Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26991499</pmid><doi>10.1111/tpj.13165</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6251-6745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2016-05, Vol.86 (4), p.308-321
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2000165603
source MEDLINE; Wiley Online Library Journals; IngentaConnect Open Access Journals; Wiley Online Library Free Content; EZB Electronic Journals Library
subjects Biological Transport
cell walls
Cellulose
diacylglycerols
galactolipids
Gene Expression Regulation, Plant
Genes
hemicellulose
non‐specific phospholipase C
Oryza - enzymology
Oryza - metabolism
Oryza sativa
phosphatidic acid
phospholipids
plant growth
Plant Proteins - antagonists & inhibitors
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Proteins - physiology
Plant Stems - enzymology
Plant Stems - metabolism
rice
rice hulls
RNA Interference
sclerenchyma
secondary cell wall
seed shattering
silicon
Silicon - metabolism
silicon distribution
stem nodes
strength (mechanics)
stress response
Type C Phospholipases - antagonists & inhibitors
Type C Phospholipases - genetics
Type C Phospholipases - metabolism
Type C Phospholipases - physiology
title Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90specific%20phospholipase%20C1%20affects%20silicon%20distribution%20and%20mechanical%20strength%20in%20stem%20nodes%20of%20rice&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Cao,%20Huasheng&rft.date=2016-05&rft.volume=86&rft.issue=4&rft.spage=308&rft.epage=321&rft.pages=308-321&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13165&rft_dat=%3Cproquest_cross%3E4097003361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798927210&rft_id=info:pmid/26991499&rfr_iscdi=true