Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice
Summary Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐o...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2016-05, Vol.86 (4), p.308-321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 4 |
container_start_page | 308 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 86 |
creator | Cao, Huasheng Zhuo, Lin Su, Yuan Sun, Linxiao Wang, Xuemin |
description | Summary
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Significance Statement
Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production. |
doi_str_mv | 10.1111/tpj.13165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000165603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4097003361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</originalsourceid><addsrcrecordid>eNqF0c1qFTEYBuAgFnusLrwBCbjRxbT5z2QpB_9KURcV3A2Zb754cpiZjJMZpDsvwWv0Skw9bReCNBCSkIcXkpeQZ5yd8jLOlml_yiU3-gHZcGl0Jbn8-pBsmDOssoqLY_I45z1j3EqjHpFjYZzjyrkN2X9M4--fv_KEEEMEOu1SLrOPk89It5z6EBCWTHPsI6SRdjEvc2zXJZaDHzs6IOz8GMH3tNzg-G3Z0TiWPQ50TB1mmgKdI-ATchR8n_HpzXpCvrx9c7l9X118evdh-_qiAi2UroQ2QYUOQ2cCgBPWai4AW2i96aDDuha6dkq6VkrQ0FmFWjJtAUwrlKzlCXl5yJ3m9H3FvDRDzIB970dMa24EKx9htGHyXsprVhurmdH3U-ucNkoIW-iLf-g-rfNY3nyt6vIkwVlRrw4K5pTzjKGZ5jj4-arhrLmutSm1Nn9rLfb5TeLaDtjdydseCzg7gB-xx6v_JzWXn88PkX8AftCs4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798927210</pqid></control><display><type>article</type><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>IngentaConnect Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB Electronic Journals Library</source><creator>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</creator><creatorcontrib>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</creatorcontrib><description>Summary
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Significance Statement
Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13165</identifier><identifier>PMID: 26991499</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biological Transport ; cell walls ; Cellulose ; diacylglycerols ; galactolipids ; Gene Expression Regulation, Plant ; Genes ; hemicellulose ; non‐specific phospholipase C ; Oryza - enzymology ; Oryza - metabolism ; Oryza sativa ; phosphatidic acid ; phospholipids ; plant growth ; Plant Proteins - antagonists & inhibitors ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Proteins - physiology ; Plant Stems - enzymology ; Plant Stems - metabolism ; rice ; rice hulls ; RNA Interference ; sclerenchyma ; secondary cell wall ; seed shattering ; silicon ; Silicon - metabolism ; silicon distribution ; stem nodes ; strength (mechanics) ; stress response ; Type C Phospholipases - antagonists & inhibitors ; Type C Phospholipases - genetics ; Type C Phospholipases - metabolism ; Type C Phospholipases - physiology</subject><ispartof>The Plant journal : for cell and molecular biology, 2016-05, Vol.86 (4), p.308-321</ispartof><rights>2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd</rights><rights>2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</citedby><cites>FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</cites><orcidid>0000-0002-6251-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26991499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Huasheng</creatorcontrib><creatorcontrib>Zhuo, Lin</creatorcontrib><creatorcontrib>Su, Yuan</creatorcontrib><creatorcontrib>Sun, Linxiao</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Significance Statement
Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</description><subject>Biological Transport</subject><subject>cell walls</subject><subject>Cellulose</subject><subject>diacylglycerols</subject><subject>galactolipids</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>hemicellulose</subject><subject>non‐specific phospholipase C</subject><subject>Oryza - enzymology</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>phosphatidic acid</subject><subject>phospholipids</subject><subject>plant growth</subject><subject>Plant Proteins - antagonists & inhibitors</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - physiology</subject><subject>Plant Stems - enzymology</subject><subject>Plant Stems - metabolism</subject><subject>rice</subject><subject>rice hulls</subject><subject>RNA Interference</subject><subject>sclerenchyma</subject><subject>secondary cell wall</subject><subject>seed shattering</subject><subject>silicon</subject><subject>Silicon - metabolism</subject><subject>silicon distribution</subject><subject>stem nodes</subject><subject>strength (mechanics)</subject><subject>stress response</subject><subject>Type C Phospholipases - antagonists & inhibitors</subject><subject>Type C Phospholipases - genetics</subject><subject>Type C Phospholipases - metabolism</subject><subject>Type C Phospholipases - physiology</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1qFTEYBuAgFnusLrwBCbjRxbT5z2QpB_9KURcV3A2Zb754cpiZjJMZpDsvwWv0Skw9bReCNBCSkIcXkpeQZ5yd8jLOlml_yiU3-gHZcGl0Jbn8-pBsmDOssoqLY_I45z1j3EqjHpFjYZzjyrkN2X9M4--fv_KEEEMEOu1SLrOPk89It5z6EBCWTHPsI6SRdjEvc2zXJZaDHzs6IOz8GMH3tNzg-G3Z0TiWPQ50TB1mmgKdI-ATchR8n_HpzXpCvrx9c7l9X118evdh-_qiAi2UroQ2QYUOQ2cCgBPWai4AW2i96aDDuha6dkq6VkrQ0FmFWjJtAUwrlKzlCXl5yJ3m9H3FvDRDzIB970dMa24EKx9htGHyXsprVhurmdH3U-ucNkoIW-iLf-g-rfNY3nyt6vIkwVlRrw4K5pTzjKGZ5jj4-arhrLmutSm1Nn9rLfb5TeLaDtjdydseCzg7gB-xx6v_JzWXn88PkX8AftCs4w</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Cao, Huasheng</creator><creator>Zhuo, Lin</creator><creator>Su, Yuan</creator><creator>Sun, Linxiao</creator><creator>Wang, Xuemin</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6251-6745</orcidid></search><sort><creationdate>201605</creationdate><title>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</title><author>Cao, Huasheng ; Zhuo, Lin ; Su, Yuan ; Sun, Linxiao ; Wang, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5245-256f4fdefd6fcc9277512cebcba6dcde882589439b33c5cd74e53057cc6b24383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological Transport</topic><topic>cell walls</topic><topic>Cellulose</topic><topic>diacylglycerols</topic><topic>galactolipids</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>hemicellulose</topic><topic>non‐specific phospholipase C</topic><topic>Oryza - enzymology</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>phosphatidic acid</topic><topic>phospholipids</topic><topic>plant growth</topic><topic>Plant Proteins - antagonists & inhibitors</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - physiology</topic><topic>Plant Stems - enzymology</topic><topic>Plant Stems - metabolism</topic><topic>rice</topic><topic>rice hulls</topic><topic>RNA Interference</topic><topic>sclerenchyma</topic><topic>secondary cell wall</topic><topic>seed shattering</topic><topic>silicon</topic><topic>Silicon - metabolism</topic><topic>silicon distribution</topic><topic>stem nodes</topic><topic>strength (mechanics)</topic><topic>stress response</topic><topic>Type C Phospholipases - antagonists & inhibitors</topic><topic>Type C Phospholipases - genetics</topic><topic>Type C Phospholipases - metabolism</topic><topic>Type C Phospholipases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Huasheng</creatorcontrib><creatorcontrib>Zhuo, Lin</creatorcontrib><creatorcontrib>Su, Yuan</creatorcontrib><creatorcontrib>Sun, Linxiao</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Huasheng</au><au>Zhuo, Lin</au><au>Su, Yuan</au><au>Sun, Linxiao</au><au>Wang, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016-05</date><risdate>2016</risdate><volume>86</volume><issue>4</issue><spage>308</spage><epage>321</epage><pages>308-321</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1‐OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild‐type plants; whereas NPC1‐RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Significance Statement
Silicon is a main component of secondary cell walls. Here we use under‐ and over‐expression of a non‐specific phospholipase, NPC1, to show that NPC1 impacts lipid levels, cellulose content, silicon distribution, mechanical strength of rice nodes, and seed shattering; genetic alterations of NPC1 thus have consequences for rice production.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26991499</pmid><doi>10.1111/tpj.13165</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6251-6745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2016-05, Vol.86 (4), p.308-321 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2000165603 |
source | MEDLINE; Wiley Online Library Journals; IngentaConnect Open Access Journals; Wiley Online Library Free Content; EZB Electronic Journals Library |
subjects | Biological Transport cell walls Cellulose diacylglycerols galactolipids Gene Expression Regulation, Plant Genes hemicellulose non‐specific phospholipase C Oryza - enzymology Oryza - metabolism Oryza sativa phosphatidic acid phospholipids plant growth Plant Proteins - antagonists & inhibitors Plant Proteins - genetics Plant Proteins - metabolism Plant Proteins - physiology Plant Stems - enzymology Plant Stems - metabolism rice rice hulls RNA Interference sclerenchyma secondary cell wall seed shattering silicon Silicon - metabolism silicon distribution stem nodes strength (mechanics) stress response Type C Phospholipases - antagonists & inhibitors Type C Phospholipases - genetics Type C Phospholipases - metabolism Type C Phospholipases - physiology |
title | Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90specific%20phospholipase%20C1%20affects%20silicon%20distribution%20and%20mechanical%20strength%20in%20stem%20nodes%20of%20rice&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Cao,%20Huasheng&rft.date=2016-05&rft.volume=86&rft.issue=4&rft.spage=308&rft.epage=321&rft.pages=308-321&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13165&rft_dat=%3Cproquest_cross%3E4097003361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798927210&rft_id=info:pmid/26991499&rfr_iscdi=true |