Global analysis of phosphorylation networks in humans

Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase–substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2014-01, Vol.1844 (1), p.224-231
Hauptverfasser: Hu, Jianfei, Rho, Hee-Sool, Newman, Robert H., Hwang, Woochang, Neiswinger, John, Zhu, Heng, Zhang, Jin, Qian, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 1
container_start_page 224
container_title Biochimica et biophysica acta
container_volume 1844
creator Hu, Jianfei
Rho, Hee-Sool
Newman, Robert H.
Hwang, Woochang
Neiswinger, John
Zhu, Heng
Zhang, Jin
Qian, Jiang
description Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase–substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. •A conserved kinase-to-kinase backbone exists in the phosphorylation networks.•Functions of homologous kinases are often conserved, even with distinct substrates.•Phosphorylation networks are inherently wired with gene regulatory networks.
doi_str_mv 10.1016/j.bbapap.2013.03.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000149015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963913001222</els_id><sourcerecordid>1466375426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-18b079cfc50affeca3e8fee0d781f293965c2d60635473a87e49d55531c360893</originalsourceid><addsrcrecordid>eNqFUUtv1DAQthCIPuAfIJQjlyzjt31BQhUtlSr1AmfLcSasl6wd7GzR_vtmtaXApZVmNCPNN988PkLeUVhRoOrjZtV1fvLTigHlK1gM7AtySo02LRVSvFxyqaG1itsTclbrBoCB1vI1OWFcMsEsOyXyasydHxuf_LivsTZ5aKZ1rouX_ejnmFOTcP6dy8_axNSsd1uf6hvyavBjxbcP8Zx8v_zy7eJre3N7dX3x-aYN0sq5paYDbcMQJPhhwOA5mgERem3owCy3SgbWK1BcCs290ShsL6XkNHAFxvJz8unIO-26LfYB01z86KYSt77sXfbR_V9Jce1-5DvHDZXC0IXgwwNByb92WGe3jTXgOPqEeVcdAwAqLFD5LJQaxq3QoOF5qFCKaymYWqDiCA0l11pweFyegjvo6DbuqKM76OhgMTgc_v7fwx-b_gj39zO4vP8uYnE1REwB-1gwzK7P8ekJ92Lhr-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466375426</pqid></control><display><type>article</type><title>Global analysis of phosphorylation networks in humans</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hu, Jianfei ; Rho, Hee-Sool ; Newman, Robert H. ; Hwang, Woochang ; Neiswinger, John ; Zhu, Heng ; Zhang, Jin ; Qian, Jiang</creator><creatorcontrib>Hu, Jianfei ; Rho, Hee-Sool ; Newman, Robert H. ; Hwang, Woochang ; Neiswinger, John ; Zhu, Heng ; Zhang, Jin ; Qian, Jiang</creatorcontrib><description>Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase–substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology &amp; Clinical Implications. Guest Editor: Yudong Cai. •A conserved kinase-to-kinase backbone exists in the phosphorylation networks.•Functions of homologous kinases are often conserved, even with distinct substrates.•Phosphorylation networks are inherently wired with gene regulatory networks.</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2013.03.009</identifier><identifier>PMID: 23524292</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computational Biology - methods ; Conservation ; Gene Regulatory Networks ; Humans ; Kinase–substrate relationships (KSRs) ; microarray technology ; Network module ; Phosphorylation ; Phosphorylation network ; Phosphotransferases - chemistry ; Phosphotransferases - genetics ; physiology ; Proteomics ; Saccharomyces cerevisiae - genetics ; signal transduction ; Signal Transduction - genetics ; Systems Biology ; transcription (genetics) ; Transcription Factors - genetics ; yeasts</subject><ispartof>Biochimica et biophysica acta, 2014-01, Vol.1844 (1), p.224-231</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><rights>2013 Elsevier B.V. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-18b079cfc50affeca3e8fee0d781f293965c2d60635473a87e49d55531c360893</citedby><cites>FETCH-LOGICAL-c595t-18b079cfc50affeca3e8fee0d781f293965c2d60635473a87e49d55531c360893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1570963913001222$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23524292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jianfei</creatorcontrib><creatorcontrib>Rho, Hee-Sool</creatorcontrib><creatorcontrib>Newman, Robert H.</creatorcontrib><creatorcontrib>Hwang, Woochang</creatorcontrib><creatorcontrib>Neiswinger, John</creatorcontrib><creatorcontrib>Zhu, Heng</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><title>Global analysis of phosphorylation networks in humans</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase–substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology &amp; Clinical Implications. Guest Editor: Yudong Cai. •A conserved kinase-to-kinase backbone exists in the phosphorylation networks.•Functions of homologous kinases are often conserved, even with distinct substrates.•Phosphorylation networks are inherently wired with gene regulatory networks.</description><subject>Computational Biology - methods</subject><subject>Conservation</subject><subject>Gene Regulatory Networks</subject><subject>Humans</subject><subject>Kinase–substrate relationships (KSRs)</subject><subject>microarray technology</subject><subject>Network module</subject><subject>Phosphorylation</subject><subject>Phosphorylation network</subject><subject>Phosphotransferases - chemistry</subject><subject>Phosphotransferases - genetics</subject><subject>physiology</subject><subject>Proteomics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Systems Biology</subject><subject>transcription (genetics)</subject><subject>Transcription Factors - genetics</subject><subject>yeasts</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUUtv1DAQthCIPuAfIJQjlyzjt31BQhUtlSr1AmfLcSasl6wd7GzR_vtmtaXApZVmNCPNN988PkLeUVhRoOrjZtV1fvLTigHlK1gM7AtySo02LRVSvFxyqaG1itsTclbrBoCB1vI1OWFcMsEsOyXyasydHxuf_LivsTZ5aKZ1rouX_ejnmFOTcP6dy8_axNSsd1uf6hvyavBjxbcP8Zx8v_zy7eJre3N7dX3x-aYN0sq5paYDbcMQJPhhwOA5mgERem3owCy3SgbWK1BcCs290ShsL6XkNHAFxvJz8unIO-26LfYB01z86KYSt77sXfbR_V9Jce1-5DvHDZXC0IXgwwNByb92WGe3jTXgOPqEeVcdAwAqLFD5LJQaxq3QoOF5qFCKaymYWqDiCA0l11pweFyegjvo6DbuqKM76OhgMTgc_v7fwx-b_gj39zO4vP8uYnE1REwB-1gwzK7P8ekJ92Lhr-c</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hu, Jianfei</creator><creator>Rho, Hee-Sool</creator><creator>Newman, Robert H.</creator><creator>Hwang, Woochang</creator><creator>Neiswinger, John</creator><creator>Zhu, Heng</creator><creator>Zhang, Jin</creator><creator>Qian, Jiang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Global analysis of phosphorylation networks in humans</title><author>Hu, Jianfei ; Rho, Hee-Sool ; Newman, Robert H. ; Hwang, Woochang ; Neiswinger, John ; Zhu, Heng ; Zhang, Jin ; Qian, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-18b079cfc50affeca3e8fee0d781f293965c2d60635473a87e49d55531c360893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational Biology - methods</topic><topic>Conservation</topic><topic>Gene Regulatory Networks</topic><topic>Humans</topic><topic>Kinase–substrate relationships (KSRs)</topic><topic>microarray technology</topic><topic>Network module</topic><topic>Phosphorylation</topic><topic>Phosphorylation network</topic><topic>Phosphotransferases - chemistry</topic><topic>Phosphotransferases - genetics</topic><topic>physiology</topic><topic>Proteomics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Systems Biology</topic><topic>transcription (genetics)</topic><topic>Transcription Factors - genetics</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jianfei</creatorcontrib><creatorcontrib>Rho, Hee-Sool</creatorcontrib><creatorcontrib>Newman, Robert H.</creatorcontrib><creatorcontrib>Hwang, Woochang</creatorcontrib><creatorcontrib>Neiswinger, John</creatorcontrib><creatorcontrib>Zhu, Heng</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jianfei</au><au>Rho, Hee-Sool</au><au>Newman, Robert H.</au><au>Hwang, Woochang</au><au>Neiswinger, John</au><au>Zhu, Heng</au><au>Zhang, Jin</au><au>Qian, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global analysis of phosphorylation networks in humans</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>1844</volume><issue>1</issue><spage>224</spage><epage>231</epage><pages>224-231</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase–substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology &amp; Clinical Implications. Guest Editor: Yudong Cai. •A conserved kinase-to-kinase backbone exists in the phosphorylation networks.•Functions of homologous kinases are often conserved, even with distinct substrates.•Phosphorylation networks are inherently wired with gene regulatory networks.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23524292</pmid><doi>10.1016/j.bbapap.2013.03.009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta, 2014-01, Vol.1844 (1), p.224-231
issn 1570-9639
0006-3002
1878-1454
language eng
recordid cdi_proquest_miscellaneous_2000149015
source MEDLINE; Elsevier ScienceDirect Journals
subjects Computational Biology - methods
Conservation
Gene Regulatory Networks
Humans
Kinase–substrate relationships (KSRs)
microarray technology
Network module
Phosphorylation
Phosphorylation network
Phosphotransferases - chemistry
Phosphotransferases - genetics
physiology
Proteomics
Saccharomyces cerevisiae - genetics
signal transduction
Signal Transduction - genetics
Systems Biology
transcription (genetics)
Transcription Factors - genetics
yeasts
title Global analysis of phosphorylation networks in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20analysis%20of%20phosphorylation%20networks%20in%20humans&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Hu,%20Jianfei&rft.date=2014-01-01&rft.volume=1844&rft.issue=1&rft.spage=224&rft.epage=231&rft.pages=224-231&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2013.03.009&rft_dat=%3Cproquest_pubme%3E1466375426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466375426&rft_id=info:pmid/23524292&rft_els_id=S1570963913001222&rfr_iscdi=true