A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae

Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1–coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2013-04, Vol.1831 (4), p.776-791
Hauptverfasser: Allan, Christopher M., Hill, Shauna, Morvaridi, Susan, Saiki, Ryoichi, Johnson, Jarrett S., Liau, Wei-Siang, Hirano, Kathleen, Kawashima, Tadashi, Ji, Ziming, Loo, Joseph A., Shepherd, Jennifer N., Clarke, Catherine F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 4
container_start_page 776
container_title Biochimica et biophysica acta
container_volume 1831
creator Allan, Christopher M.
Hill, Shauna
Morvaridi, Susan
Saiki, Ryoichi
Johnson, Jarrett S.
Liau, Wei-Siang
Hirano, Kathleen
Kawashima, Tadashi
Ji, Ziming
Loo, Joseph A.
Shepherd, Jennifer N.
Clarke, Catherine F.
description Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1–coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. [Display omitted] ► Yeast coq10 mutants respire very poorly yet have a normal content of coenzyme Q6. ► Expression of C. crescentus CC1736 START domain protein rescues the coq10 mutant. ► CC1736 binds Q3 or demethoxy-Q3, but doesn't bind 3-farnesyl-4-hydroxybenzoic acid. ► coq-10 mutants show decreased de novo Q synthesis and accumulate Q-intermediates. ► Coq10p facilitates Q biosynthesis and may deliver new Q to respiratory complexes.
doi_str_mv 10.1016/j.bbalip.2012.12.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000101515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388198112002612</els_id><sourcerecordid>2000101515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-45ee72b96826081796729f08c67b128d5755bf76c079ff494fe01dee3b2c8b473</originalsourceid><addsrcrecordid>eNqFUtuO0zAQjRCIXRb-AIEfedgU27k4eUGqVtykldDS7rPlOOPWVWJnbbcifBjfx1RdFngBaazx5cx4Zs7JspeMLhhl9dvdouvUYKcFp4wv0CgVj7Jz1og25zVrHuO-aJqctQ07y57FuKOUVUVRPc3OeMEFbVh9nv1YEu1dhHCAnqzWy69r0vtRWYfX4L7PI5CbvLOut25DJj_ME0zJ9kBsJAHu9jZgnPGBgDFWW3CJ3JDO-ji7tIVo4yXC4mSDSj7MBAbQKXhHUlAuTj6kS6JcjytZ_8326InZO40nR7CIldJ6q4IfZw2RaAhwsNEqeJ49MWqI8OLeX2S3H96vrz7l118-fr5aXue64jTlZQUgeNfWDa-xX9HWgreGNroWHeNNX4mq6oyoNRWtMWVbGqCsByg6rpuuFMVF9u6Ud9p3I_Qa-wtqkFOwowqz9MrKv1-c3cqNP8iipfjrMcGb-wTB3-0hJjnaqGEYlAO_j5JTZAV5QWb-B2UFKwUr6qJAaHmC6uBjDGAeKmJUHtUhd_KkDnlUh0RDdWDYqz-7eQj6JQcEvD4BjPJSbYKN8naFGWqsktZty38PBHDqBwtBxiPrGnpUgk6y9_bfNfwEqu3bXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314713633</pqid></control><display><type>article</type><title>A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Allan, Christopher M. ; Hill, Shauna ; Morvaridi, Susan ; Saiki, Ryoichi ; Johnson, Jarrett S. ; Liau, Wei-Siang ; Hirano, Kathleen ; Kawashima, Tadashi ; Ji, Ziming ; Loo, Joseph A. ; Shepherd, Jennifer N. ; Clarke, Catherine F.</creator><creatorcontrib>Allan, Christopher M. ; Hill, Shauna ; Morvaridi, Susan ; Saiki, Ryoichi ; Johnson, Jarrett S. ; Liau, Wei-Siang ; Hirano, Kathleen ; Kawashima, Tadashi ; Ji, Ziming ; Loo, Joseph A. ; Shepherd, Jennifer N. ; Clarke, Catherine F.</creatorcontrib><description>Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1–coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. [Display omitted] ► Yeast coq10 mutants respire very poorly yet have a normal content of coenzyme Q6. ► Expression of C. crescentus CC1736 START domain protein rescues the coq10 mutant. ► CC1736 binds Q3 or demethoxy-Q3, but doesn't bind 3-farnesyl-4-hydroxybenzoic acid. ► coq-10 mutants show decreased de novo Q synthesis and accumulate Q-intermediates. ► Coq10p facilitates Q biosynthesis and may deliver new Q to respiratory complexes.</description><identifier>ISSN: 1388-1981</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2618</identifier><identifier>DOI: 10.1016/j.bbalip.2012.12.007</identifier><identifier>PMID: 23270816</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Sequence ; antioxidants ; Antioxidants - metabolism ; benzoquinones ; biosynthesis ; Caulobacter crescentus ; electron transfer ; Electron Transport - genetics ; Electron Transport - physiology ; electron transport chain ; gene overexpression ; hydrophobicity ; isoprene ; Lipid autoxidation ; Lipid binding ; mitochondria ; Molecular Sequence Data ; mutants ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; phenotype ; polypeptides ; polyunsaturated fatty acids ; Respiratory electron transport ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology, Amino Acid ; stable isotopes ; Steroidogenic acute regulatory protein ; Ubiquinone ; Ubiquinone - analogs &amp; derivatives ; Ubiquinone - metabolism ; ubiquinones ; Yeast mitochondria ; Yeasts</subject><ispartof>Biochimica et biophysica acta, 2013-04, Vol.1831 (4), p.776-791</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><rights>2012 Elsevier B.V. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-45ee72b96826081796729f08c67b128d5755bf76c079ff494fe01dee3b2c8b473</citedby><cites>FETCH-LOGICAL-c520t-45ee72b96826081796729f08c67b128d5755bf76c079ff494fe01dee3b2c8b473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbalip.2012.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23270816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allan, Christopher M.</creatorcontrib><creatorcontrib>Hill, Shauna</creatorcontrib><creatorcontrib>Morvaridi, Susan</creatorcontrib><creatorcontrib>Saiki, Ryoichi</creatorcontrib><creatorcontrib>Johnson, Jarrett S.</creatorcontrib><creatorcontrib>Liau, Wei-Siang</creatorcontrib><creatorcontrib>Hirano, Kathleen</creatorcontrib><creatorcontrib>Kawashima, Tadashi</creatorcontrib><creatorcontrib>Ji, Ziming</creatorcontrib><creatorcontrib>Loo, Joseph A.</creatorcontrib><creatorcontrib>Shepherd, Jennifer N.</creatorcontrib><creatorcontrib>Clarke, Catherine F.</creatorcontrib><title>A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1–coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. [Display omitted] ► Yeast coq10 mutants respire very poorly yet have a normal content of coenzyme Q6. ► Expression of C. crescentus CC1736 START domain protein rescues the coq10 mutant. ► CC1736 binds Q3 or demethoxy-Q3, but doesn't bind 3-farnesyl-4-hydroxybenzoic acid. ► coq-10 mutants show decreased de novo Q synthesis and accumulate Q-intermediates. ► Coq10p facilitates Q biosynthesis and may deliver new Q to respiratory complexes.</description><subject>Amino Acid Sequence</subject><subject>antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>benzoquinones</subject><subject>biosynthesis</subject><subject>Caulobacter crescentus</subject><subject>electron transfer</subject><subject>Electron Transport - genetics</subject><subject>Electron Transport - physiology</subject><subject>electron transport chain</subject><subject>gene overexpression</subject><subject>hydrophobicity</subject><subject>isoprene</subject><subject>Lipid autoxidation</subject><subject>Lipid binding</subject><subject>mitochondria</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>phenotype</subject><subject>polypeptides</subject><subject>polyunsaturated fatty acids</subject><subject>Respiratory electron transport</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>stable isotopes</subject><subject>Steroidogenic acute regulatory protein</subject><subject>Ubiquinone</subject><subject>Ubiquinone - analogs &amp; derivatives</subject><subject>Ubiquinone - metabolism</subject><subject>ubiquinones</subject><subject>Yeast mitochondria</subject><subject>Yeasts</subject><issn>1388-1981</issn><issn>0006-3002</issn><issn>1879-2618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUtuO0zAQjRCIXRb-AIEfedgU27k4eUGqVtykldDS7rPlOOPWVWJnbbcifBjfx1RdFngBaazx5cx4Zs7JspeMLhhl9dvdouvUYKcFp4wv0CgVj7Jz1og25zVrHuO-aJqctQ07y57FuKOUVUVRPc3OeMEFbVh9nv1YEu1dhHCAnqzWy69r0vtRWYfX4L7PI5CbvLOut25DJj_ME0zJ9kBsJAHu9jZgnPGBgDFWW3CJ3JDO-ji7tIVo4yXC4mSDSj7MBAbQKXhHUlAuTj6kS6JcjytZ_8326InZO40nR7CIldJ6q4IfZw2RaAhwsNEqeJ49MWqI8OLeX2S3H96vrz7l118-fr5aXue64jTlZQUgeNfWDa-xX9HWgreGNroWHeNNX4mq6oyoNRWtMWVbGqCsByg6rpuuFMVF9u6Ud9p3I_Qa-wtqkFOwowqz9MrKv1-c3cqNP8iipfjrMcGb-wTB3-0hJjnaqGEYlAO_j5JTZAV5QWb-B2UFKwUr6qJAaHmC6uBjDGAeKmJUHtUhd_KkDnlUh0RDdWDYqz-7eQj6JQcEvD4BjPJSbYKN8naFGWqsktZty38PBHDqBwtBxiPrGnpUgk6y9_bfNfwEqu3bXw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Allan, Christopher M.</creator><creator>Hill, Shauna</creator><creator>Morvaridi, Susan</creator><creator>Saiki, Ryoichi</creator><creator>Johnson, Jarrett S.</creator><creator>Liau, Wei-Siang</creator><creator>Hirano, Kathleen</creator><creator>Kawashima, Tadashi</creator><creator>Ji, Ziming</creator><creator>Loo, Joseph A.</creator><creator>Shepherd, Jennifer N.</creator><creator>Clarke, Catherine F.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130401</creationdate><title>A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae</title><author>Allan, Christopher M. ; Hill, Shauna ; Morvaridi, Susan ; Saiki, Ryoichi ; Johnson, Jarrett S. ; Liau, Wei-Siang ; Hirano, Kathleen ; Kawashima, Tadashi ; Ji, Ziming ; Loo, Joseph A. ; Shepherd, Jennifer N. ; Clarke, Catherine F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-45ee72b96826081796729f08c67b128d5755bf76c079ff494fe01dee3b2c8b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>benzoquinones</topic><topic>biosynthesis</topic><topic>Caulobacter crescentus</topic><topic>electron transfer</topic><topic>Electron Transport - genetics</topic><topic>Electron Transport - physiology</topic><topic>electron transport chain</topic><topic>gene overexpression</topic><topic>hydrophobicity</topic><topic>isoprene</topic><topic>Lipid autoxidation</topic><topic>Lipid binding</topic><topic>mitochondria</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>phenotype</topic><topic>polypeptides</topic><topic>polyunsaturated fatty acids</topic><topic>Respiratory electron transport</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>stable isotopes</topic><topic>Steroidogenic acute regulatory protein</topic><topic>Ubiquinone</topic><topic>Ubiquinone - analogs &amp; derivatives</topic><topic>Ubiquinone - metabolism</topic><topic>ubiquinones</topic><topic>Yeast mitochondria</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allan, Christopher M.</creatorcontrib><creatorcontrib>Hill, Shauna</creatorcontrib><creatorcontrib>Morvaridi, Susan</creatorcontrib><creatorcontrib>Saiki, Ryoichi</creatorcontrib><creatorcontrib>Johnson, Jarrett S.</creatorcontrib><creatorcontrib>Liau, Wei-Siang</creatorcontrib><creatorcontrib>Hirano, Kathleen</creatorcontrib><creatorcontrib>Kawashima, Tadashi</creatorcontrib><creatorcontrib>Ji, Ziming</creatorcontrib><creatorcontrib>Loo, Joseph A.</creatorcontrib><creatorcontrib>Shepherd, Jennifer N.</creatorcontrib><creatorcontrib>Clarke, Catherine F.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allan, Christopher M.</au><au>Hill, Shauna</au><au>Morvaridi, Susan</au><au>Saiki, Ryoichi</au><au>Johnson, Jarrett S.</au><au>Liau, Wei-Siang</au><au>Hirano, Kathleen</au><au>Kawashima, Tadashi</au><au>Ji, Ziming</au><au>Loo, Joseph A.</au><au>Shepherd, Jennifer N.</au><au>Clarke, Catherine F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>1831</volume><issue>4</issue><spage>776</spage><epage>791</epage><pages>776-791</pages><issn>1388-1981</issn><issn>0006-3002</issn><eissn>1879-2618</eissn><abstract>Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1–coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. [Display omitted] ► Yeast coq10 mutants respire very poorly yet have a normal content of coenzyme Q6. ► Expression of C. crescentus CC1736 START domain protein rescues the coq10 mutant. ► CC1736 binds Q3 or demethoxy-Q3, but doesn't bind 3-farnesyl-4-hydroxybenzoic acid. ► coq-10 mutants show decreased de novo Q synthesis and accumulate Q-intermediates. ► Coq10p facilitates Q biosynthesis and may deliver new Q to respiratory complexes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23270816</pmid><doi>10.1016/j.bbalip.2012.12.007</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-1981
ispartof Biochimica et biophysica acta, 2013-04, Vol.1831 (4), p.776-791
issn 1388-1981
0006-3002
1879-2618
language eng
recordid cdi_proquest_miscellaneous_2000101515
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Sequence
antioxidants
Antioxidants - metabolism
benzoquinones
biosynthesis
Caulobacter crescentus
electron transfer
Electron Transport - genetics
Electron Transport - physiology
electron transport chain
gene overexpression
hydrophobicity
isoprene
Lipid autoxidation
Lipid binding
mitochondria
Molecular Sequence Data
mutants
Peptides - chemistry
Peptides - genetics
Peptides - metabolism
phenotype
polypeptides
polyunsaturated fatty acids
Respiratory electron transport
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology, Amino Acid
stable isotopes
Steroidogenic acute regulatory protein
Ubiquinone
Ubiquinone - analogs & derivatives
Ubiquinone - metabolism
ubiquinones
Yeast mitochondria
Yeasts
title A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20START%20domain%20coenzyme%20Q-binding%20polypeptide%20is%20required%20for%20efficient%20Q%20biosynthesis,%20respiratory%20electron%20transport,%20and%20antioxidant%20function%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Allan,%20Christopher%20M.&rft.date=2013-04-01&rft.volume=1831&rft.issue=4&rft.spage=776&rft.epage=791&rft.pages=776-791&rft.issn=1388-1981&rft.eissn=1879-2618&rft_id=info:doi/10.1016/j.bbalip.2012.12.007&rft_dat=%3Cproquest_pubme%3E2000101515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314713633&rft_id=info:pmid/23270816&rft_els_id=S1388198112002612&rfr_iscdi=true