Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics
Summary Background Solar lentigo appears as dark brown spots that occur on sun‐exposed areas and is considered to be a hallmark of aged skin. Although considerable knowledge about acute pigmentation has recently been accumulated, little is yet known about the mechanisms underlying chronic‐ and dela...
Gespeichert in:
Veröffentlicht in: | British journal of dermatology (1951) 2007-06, Vol.156 (6), p.1214-1223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1223 |
---|---|
container_issue | 6 |
container_start_page | 1214 |
container_title | British journal of dermatology (1951) |
container_volume | 156 |
creator | Aoki, H. Moro, O. Tagami, H. Kishimoto, J. |
description | Summary Background Solar lentigo appears as dark brown spots that occur on sun‐exposed areas and is considered to be a hallmark of aged skin. Although considerable knowledge about acute pigmentation has recently been accumulated, little is yet known about the mechanisms underlying chronic‐ and delayed‐type hyperpigmentation, such as solar lentigo.
Objectives To clarify further the mechanisms underlying the development of solar lentigo, we carried out gene expression analysis in skin biopsy specimens obtained from human solar lentigines using DNA microarray analysis.
Methods Two pairs of skin specimens were obtained from solar lentigo and adjacent sun‐exposed normal skin, as well as normal skin on the buttocks of 16 volunteers aged 40–55 years. One set of specimens was frozen and RNA was extracted for microarray and the other set was prepared for histological sections and analysed by antibodies and probes.
Results Sixty‐five genes were upregulated more than 1·8‐fold in solar lentigo compared with adjacent control skin and seven melanocyte‐related genes were included. Compared with sun‐protected skin, many inflammation‐related genes were upregulated in solar lentigo, and compared with sun‐exposed control skin, upregulation of genes related to fatty‐acid metabolism was apparent in solar lentigo. Moreover, we found downregulation of cornified envelope‐related genes, which suggests suppression of cornification in the epidermis in solar lentigo. Immunohistochemically, larger numbers of TRP1‐positive cells were found in the basal layer of solar lentigo than in normal skin. Fatty acid‐related genes were highly expressed in the epidermis as detected by in situ hybridization, and they were much more prominent in the lesional skin of solar lentigo. However, cycling epidermal cells detectable with Ki67 antibody were fewer in the lesional skin of solar lentigo. Expression of filaggrin and involucrin was decreased in the lesional skin, where the number of cell layers of the stratum corneum was significantly higher than in normal skin.
Conclusions The results of the present microarray analysis of solar lentigo, demonstrating upregulation of genes related to inflammation, fatty‐acid metabolism and melanocytes and downregulation of cornified envelope‐related genes, suggest that solar lentigo is induced by the mutagenic effect of repeated ultraviolet light exposures in the past, leading to the characteristic enhancement of melanin production, together with decreased pr |
doi_str_mv | 10.1111/j.1365-2133.2007.07830.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20000136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20000136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5320-65746010cbbcb30e79e87d28828ca91935b5f6f6cd13e863d0f040280d14917f3</originalsourceid><addsrcrecordid>eNqNkE9v0zAYhy0EYt3gKyBf4JbwOm7s5MCBDVo2VRsSII6W47xeXZyk2Klov_2ctdqu-OI_7_N7bT-EUAY5S-PjJmdclFnBOM8LAJmDrDjk-xdk9lR4SWaQShnUgp-R8xg3AIxDCa_JGZNzVou6mBG7xB4p7rcBY3RDT7dhsM67_p7qXvtDdJEOlsbB60A99qO7H6jraUCvx4kf07brdv2wdnEczBo7Z7SnZq2DNiOGdOpMfENeWe0jvj3NF-TX4uvPq2_Z6m55ffV5lZmSF5CJUs4FMDBNYxoOKGusZFtUVVEZXbOal01phRWmZRwrwVuwMIeigpbNayYtvyAfjn3TN_7uMI6qc9Gg97rHYRdVkjVZEAmsjqAJQ4wBrdoG1-lwUAzU5Fht1KRSTSqnmFSPjtU-Rd-d7tg1HbbPwZPUBLw_ATomFzbo3rj4zFVSCMlk4j4duX_O4-G_H6Aub75Mq5TPjvnkGPdPeR3-KCG5LNXv26W6ET_YYvF9pS75A6UXp64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20000136</pqid></control><display><type>article</type><title>Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Aoki, H. ; Moro, O. ; Tagami, H. ; Kishimoto, J.</creator><creatorcontrib>Aoki, H. ; Moro, O. ; Tagami, H. ; Kishimoto, J.</creatorcontrib><description>Summary Background Solar lentigo appears as dark brown spots that occur on sun‐exposed areas and is considered to be a hallmark of aged skin. Although considerable knowledge about acute pigmentation has recently been accumulated, little is yet known about the mechanisms underlying chronic‐ and delayed‐type hyperpigmentation, such as solar lentigo.
Objectives To clarify further the mechanisms underlying the development of solar lentigo, we carried out gene expression analysis in skin biopsy specimens obtained from human solar lentigines using DNA microarray analysis.
Methods Two pairs of skin specimens were obtained from solar lentigo and adjacent sun‐exposed normal skin, as well as normal skin on the buttocks of 16 volunteers aged 40–55 years. One set of specimens was frozen and RNA was extracted for microarray and the other set was prepared for histological sections and analysed by antibodies and probes.
Results Sixty‐five genes were upregulated more than 1·8‐fold in solar lentigo compared with adjacent control skin and seven melanocyte‐related genes were included. Compared with sun‐protected skin, many inflammation‐related genes were upregulated in solar lentigo, and compared with sun‐exposed control skin, upregulation of genes related to fatty‐acid metabolism was apparent in solar lentigo. Moreover, we found downregulation of cornified envelope‐related genes, which suggests suppression of cornification in the epidermis in solar lentigo. Immunohistochemically, larger numbers of TRP1‐positive cells were found in the basal layer of solar lentigo than in normal skin. Fatty acid‐related genes were highly expressed in the epidermis as detected by in situ hybridization, and they were much more prominent in the lesional skin of solar lentigo. However, cycling epidermal cells detectable with Ki67 antibody were fewer in the lesional skin of solar lentigo. Expression of filaggrin and involucrin was decreased in the lesional skin, where the number of cell layers of the stratum corneum was significantly higher than in normal skin.
Conclusions The results of the present microarray analysis of solar lentigo, demonstrating upregulation of genes related to inflammation, fatty‐acid metabolism and melanocytes and downregulation of cornified envelope‐related genes, suggest that solar lentigo is induced by the mutagenic effect of repeated ultraviolet light exposures in the past, leading to the characteristic enhancement of melanin production, together with decreased proliferation and differentiation of lesional keratinocytes on the background of chronic inflammation.</description><identifier>ISSN: 0007-0963</identifier><identifier>EISSN: 1365-2133</identifier><identifier>DOI: 10.1111/j.1365-2133.2007.07830.x</identifier><identifier>PMID: 17419692</identifier><identifier>CODEN: BJDEAZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Biological and medical sciences ; Dermatology ; Gene Expression Profiling - methods ; Humans ; Immunohistochemistry - methods ; keratinocytes ; Keratinocytes - metabolism ; Lentigo ; Lentigo - genetics ; Male ; Medical sciences ; Melanins - analysis ; Melanins - genetics ; melanocyte ; microarray ; Middle Aged ; senile lentigo ; skin ; Skin - metabolism ; Skin - radiation effects ; Skin Aging - genetics ; Skin Aging - physiology ; solar lentigo ; Tumors of the skin and soft tissue. Premalignant lesions ; Ultraviolet Rays - adverse effects</subject><ispartof>British journal of dermatology (1951), 2007-06, Vol.156 (6), p.1214-1223</ispartof><rights>2007 The Authors. Journal Compilation © 2007 British Association of Dermatologists</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5320-65746010cbbcb30e79e87d28828ca91935b5f6f6cd13e863d0f040280d14917f3</citedby><cites>FETCH-LOGICAL-c5320-65746010cbbcb30e79e87d28828ca91935b5f6f6cd13e863d0f040280d14917f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2133.2007.07830.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2133.2007.07830.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18766717$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17419692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoki, H.</creatorcontrib><creatorcontrib>Moro, O.</creatorcontrib><creatorcontrib>Tagami, H.</creatorcontrib><creatorcontrib>Kishimoto, J.</creatorcontrib><title>Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics</title><title>British journal of dermatology (1951)</title><addtitle>Br J Dermatol</addtitle><description>Summary Background Solar lentigo appears as dark brown spots that occur on sun‐exposed areas and is considered to be a hallmark of aged skin. Although considerable knowledge about acute pigmentation has recently been accumulated, little is yet known about the mechanisms underlying chronic‐ and delayed‐type hyperpigmentation, such as solar lentigo.
Objectives To clarify further the mechanisms underlying the development of solar lentigo, we carried out gene expression analysis in skin biopsy specimens obtained from human solar lentigines using DNA microarray analysis.
Methods Two pairs of skin specimens were obtained from solar lentigo and adjacent sun‐exposed normal skin, as well as normal skin on the buttocks of 16 volunteers aged 40–55 years. One set of specimens was frozen and RNA was extracted for microarray and the other set was prepared for histological sections and analysed by antibodies and probes.
Results Sixty‐five genes were upregulated more than 1·8‐fold in solar lentigo compared with adjacent control skin and seven melanocyte‐related genes were included. Compared with sun‐protected skin, many inflammation‐related genes were upregulated in solar lentigo, and compared with sun‐exposed control skin, upregulation of genes related to fatty‐acid metabolism was apparent in solar lentigo. Moreover, we found downregulation of cornified envelope‐related genes, which suggests suppression of cornification in the epidermis in solar lentigo. Immunohistochemically, larger numbers of TRP1‐positive cells were found in the basal layer of solar lentigo than in normal skin. Fatty acid‐related genes were highly expressed in the epidermis as detected by in situ hybridization, and they were much more prominent in the lesional skin of solar lentigo. However, cycling epidermal cells detectable with Ki67 antibody were fewer in the lesional skin of solar lentigo. Expression of filaggrin and involucrin was decreased in the lesional skin, where the number of cell layers of the stratum corneum was significantly higher than in normal skin.
Conclusions The results of the present microarray analysis of solar lentigo, demonstrating upregulation of genes related to inflammation, fatty‐acid metabolism and melanocytes and downregulation of cornified envelope‐related genes, suggest that solar lentigo is induced by the mutagenic effect of repeated ultraviolet light exposures in the past, leading to the characteristic enhancement of melanin production, together with decreased proliferation and differentiation of lesional keratinocytes on the background of chronic inflammation.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Dermatology</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>keratinocytes</subject><subject>Keratinocytes - metabolism</subject><subject>Lentigo</subject><subject>Lentigo - genetics</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Melanins - analysis</subject><subject>Melanins - genetics</subject><subject>melanocyte</subject><subject>microarray</subject><subject>Middle Aged</subject><subject>senile lentigo</subject><subject>skin</subject><subject>Skin - metabolism</subject><subject>Skin - radiation effects</subject><subject>Skin Aging - genetics</subject><subject>Skin Aging - physiology</subject><subject>solar lentigo</subject><subject>Tumors of the skin and soft tissue. Premalignant lesions</subject><subject>Ultraviolet Rays - adverse effects</subject><issn>0007-0963</issn><issn>1365-2133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9v0zAYhy0EYt3gKyBf4JbwOm7s5MCBDVo2VRsSII6W47xeXZyk2Klov_2ctdqu-OI_7_N7bT-EUAY5S-PjJmdclFnBOM8LAJmDrDjk-xdk9lR4SWaQShnUgp-R8xg3AIxDCa_JGZNzVou6mBG7xB4p7rcBY3RDT7dhsM67_p7qXvtDdJEOlsbB60A99qO7H6jraUCvx4kf07brdv2wdnEczBo7Z7SnZq2DNiOGdOpMfENeWe0jvj3NF-TX4uvPq2_Z6m55ffV5lZmSF5CJUs4FMDBNYxoOKGusZFtUVVEZXbOal01phRWmZRwrwVuwMIeigpbNayYtvyAfjn3TN_7uMI6qc9Gg97rHYRdVkjVZEAmsjqAJQ4wBrdoG1-lwUAzU5Fht1KRSTSqnmFSPjtU-Rd-d7tg1HbbPwZPUBLw_ATomFzbo3rj4zFVSCMlk4j4duX_O4-G_H6Aub75Mq5TPjvnkGPdPeR3-KCG5LNXv26W6ET_YYvF9pS75A6UXp64</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Aoki, H.</creator><creator>Moro, O.</creator><creator>Tagami, H.</creator><creator>Kishimoto, J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200706</creationdate><title>Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics</title><author>Aoki, H. ; Moro, O. ; Tagami, H. ; Kishimoto, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5320-65746010cbbcb30e79e87d28828ca91935b5f6f6cd13e863d0f040280d14917f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Dermatology</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>keratinocytes</topic><topic>Keratinocytes - metabolism</topic><topic>Lentigo</topic><topic>Lentigo - genetics</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Melanins - analysis</topic><topic>Melanins - genetics</topic><topic>melanocyte</topic><topic>microarray</topic><topic>Middle Aged</topic><topic>senile lentigo</topic><topic>skin</topic><topic>Skin - metabolism</topic><topic>Skin - radiation effects</topic><topic>Skin Aging - genetics</topic><topic>Skin Aging - physiology</topic><topic>solar lentigo</topic><topic>Tumors of the skin and soft tissue. Premalignant lesions</topic><topic>Ultraviolet Rays - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, H.</creatorcontrib><creatorcontrib>Moro, O.</creatorcontrib><creatorcontrib>Tagami, H.</creatorcontrib><creatorcontrib>Kishimoto, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>British journal of dermatology (1951)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, H.</au><au>Moro, O.</au><au>Tagami, H.</au><au>Kishimoto, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics</atitle><jtitle>British journal of dermatology (1951)</jtitle><addtitle>Br J Dermatol</addtitle><date>2007-06</date><risdate>2007</risdate><volume>156</volume><issue>6</issue><spage>1214</spage><epage>1223</epage><pages>1214-1223</pages><issn>0007-0963</issn><eissn>1365-2133</eissn><coden>BJDEAZ</coden><abstract>Summary Background Solar lentigo appears as dark brown spots that occur on sun‐exposed areas and is considered to be a hallmark of aged skin. Although considerable knowledge about acute pigmentation has recently been accumulated, little is yet known about the mechanisms underlying chronic‐ and delayed‐type hyperpigmentation, such as solar lentigo.
Objectives To clarify further the mechanisms underlying the development of solar lentigo, we carried out gene expression analysis in skin biopsy specimens obtained from human solar lentigines using DNA microarray analysis.
Methods Two pairs of skin specimens were obtained from solar lentigo and adjacent sun‐exposed normal skin, as well as normal skin on the buttocks of 16 volunteers aged 40–55 years. One set of specimens was frozen and RNA was extracted for microarray and the other set was prepared for histological sections and analysed by antibodies and probes.
Results Sixty‐five genes were upregulated more than 1·8‐fold in solar lentigo compared with adjacent control skin and seven melanocyte‐related genes were included. Compared with sun‐protected skin, many inflammation‐related genes were upregulated in solar lentigo, and compared with sun‐exposed control skin, upregulation of genes related to fatty‐acid metabolism was apparent in solar lentigo. Moreover, we found downregulation of cornified envelope‐related genes, which suggests suppression of cornification in the epidermis in solar lentigo. Immunohistochemically, larger numbers of TRP1‐positive cells were found in the basal layer of solar lentigo than in normal skin. Fatty acid‐related genes were highly expressed in the epidermis as detected by in situ hybridization, and they were much more prominent in the lesional skin of solar lentigo. However, cycling epidermal cells detectable with Ki67 antibody were fewer in the lesional skin of solar lentigo. Expression of filaggrin and involucrin was decreased in the lesional skin, where the number of cell layers of the stratum corneum was significantly higher than in normal skin.
Conclusions The results of the present microarray analysis of solar lentigo, demonstrating upregulation of genes related to inflammation, fatty‐acid metabolism and melanocytes and downregulation of cornified envelope‐related genes, suggest that solar lentigo is induced by the mutagenic effect of repeated ultraviolet light exposures in the past, leading to the characteristic enhancement of melanin production, together with decreased proliferation and differentiation of lesional keratinocytes on the background of chronic inflammation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17419692</pmid><doi>10.1111/j.1365-2133.2007.07830.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0963 |
ispartof | British journal of dermatology (1951), 2007-06, Vol.156 (6), p.1214-1223 |
issn | 0007-0963 1365-2133 |
language | eng |
recordid | cdi_proquest_miscellaneous_20000136 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Adult Biological and medical sciences Dermatology Gene Expression Profiling - methods Humans Immunohistochemistry - methods keratinocytes Keratinocytes - metabolism Lentigo Lentigo - genetics Male Medical sciences Melanins - analysis Melanins - genetics melanocyte microarray Middle Aged senile lentigo skin Skin - metabolism Skin - radiation effects Skin Aging - genetics Skin Aging - physiology solar lentigo Tumors of the skin and soft tissue. Premalignant lesions Ultraviolet Rays - adverse effects |
title | Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20analysis%20of%20solar%20lentigo%20in%20relation%20to%20immunohistochemical%20characteristics&rft.jtitle=British%20journal%20of%20dermatology%20(1951)&rft.au=Aoki,%20H.&rft.date=2007-06&rft.volume=156&rft.issue=6&rft.spage=1214&rft.epage=1223&rft.pages=1214-1223&rft.issn=0007-0963&rft.eissn=1365-2133&rft.coden=BJDEAZ&rft_id=info:doi/10.1111/j.1365-2133.2007.07830.x&rft_dat=%3Cproquest_cross%3E20000136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20000136&rft_id=info:pmid/17419692&rfr_iscdi=true |