The intracellular trafficking pathway of transferrin

Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2012-03, Vol.1820 (3), p.264-281
Hauptverfasser: Mayle, Kristine M., Le, Alexander M., Kamei, Daniel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 3
container_start_page 264
container_title Biochimica et biophysica acta
container_volume 1820
creator Mayle, Kristine M.
Le, Alexander M.
Kamei, Daniel T.
description Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. ► Microscopy can be used to identify cellular components involved in Tf trafficking. ► Radioactivity and SPR can be used to characterize Tf binding and trafficking. ► Developing mathematical models enable evaluation of Tf kinetic parameters. ► Identifying design parameters can improve Tf’s ability to deliver chemotherapeutics.
doi_str_mv 10.1016/j.bbagen.2011.09.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000002482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304416511002248</els_id><sourcerecordid>922758675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-a8cb2164debc50d91c9d76db9ae312133d0cac34c665fcc2c27f34db248e844d3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyCYHWwS_I69QUIVL6kSC9r1lWNfz3jIJIOdKeq_x9GUApt6Y8v-7vG59xDyktGWUabf7dq-dxscW04Za6ltKbWPyIqZjjeGUv2YrKigspFMqzPyrJQdrUtZ9ZSccWZ1ZfiKyKstrtM4Z-dxGI6Dy-t6jjH5H2ncrA9u3v5yt-spLtdjiZhzGp-TJ9ENBV_c7efk-tPHq4svzeW3z18vPlw2Xhk1N874njMtA_Ze0WCZt6HTobcOBeNMiEC980J6rVX0nnveRSFDz6VBI2UQ5-T9Sfdw7PcYPC4-BzjktHf5FiaX4P-XMW1hM92A4MZw3VWBN3cCefp5xDLDPpWlUTfidCxgOe-U0Z2q5NsHSb4Mj1ZnvKLyhPo8lZIx3htiFJZoYAenaGCJBqiFGk0te_VvM_dFf7KowOsTEN0EbpNTgevvVUEvHxvBzN95YB36TcIMxSccPYaU0c8QpvSwh980HKt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000002482</pqid></control><display><type>article</type><title>The intracellular trafficking pathway of transferrin</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mayle, Kristine M. ; Le, Alexander M. ; Kamei, Daniel T.</creator><creatorcontrib>Mayle, Kristine M. ; Le, Alexander M. ; Kamei, Daniel T.</creatorcontrib><description>Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. ► Microscopy can be used to identify cellular components involved in Tf trafficking. ► Radioactivity and SPR can be used to characterize Tf binding and trafficking. ► Developing mathematical models enable evaluation of Tf kinetic parameters. ► Identifying design parameters can improve Tf’s ability to deliver chemotherapeutics.</description><identifier>ISSN: 0304-4165</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1872-8006</identifier><identifier>EISSN: 0006-3002</identifier><identifier>DOI: 10.1016/j.bbagen.2011.09.009</identifier><identifier>PMID: 21968002</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>antineoplastic agents ; cells ; Endocytosis ; endosomes ; Endosomes - metabolism ; fluorescence ; Humans ; image analysis ; Ion Transport ; iron ; Iron - metabolism ; mathematical models ; Microscopy ; Modeling ; physiological transport ; Radioactivity ; radiolabeling ; Receptors, Transferrin - chemistry ; Receptors, Transferrin - metabolism ; reflectance ; spinning disk confocal microscopy ; SPR ; surface plasmon resonance ; Trafficking ; Transferrin ; Transferrin - metabolism</subject><ispartof>Biochimica et biophysica acta, 2012-03, Vol.1820 (3), p.264-281</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><rights>2011 Elsevier B.V. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-a8cb2164debc50d91c9d76db9ae312133d0cac34c665fcc2c27f34db248e844d3</citedby><cites>FETCH-LOGICAL-c585t-a8cb2164debc50d91c9d76db9ae312133d0cac34c665fcc2c27f34db248e844d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304416511002248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21968002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayle, Kristine M.</creatorcontrib><creatorcontrib>Le, Alexander M.</creatorcontrib><creatorcontrib>Kamei, Daniel T.</creatorcontrib><title>The intracellular trafficking pathway of transferrin</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. ► Microscopy can be used to identify cellular components involved in Tf trafficking. ► Radioactivity and SPR can be used to characterize Tf binding and trafficking. ► Developing mathematical models enable evaluation of Tf kinetic parameters. ► Identifying design parameters can improve Tf’s ability to deliver chemotherapeutics.</description><subject>antineoplastic agents</subject><subject>cells</subject><subject>Endocytosis</subject><subject>endosomes</subject><subject>Endosomes - metabolism</subject><subject>fluorescence</subject><subject>Humans</subject><subject>image analysis</subject><subject>Ion Transport</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>mathematical models</subject><subject>Microscopy</subject><subject>Modeling</subject><subject>physiological transport</subject><subject>Radioactivity</subject><subject>radiolabeling</subject><subject>Receptors, Transferrin - chemistry</subject><subject>Receptors, Transferrin - metabolism</subject><subject>reflectance</subject><subject>spinning disk confocal microscopy</subject><subject>SPR</subject><subject>surface plasmon resonance</subject><subject>Trafficking</subject><subject>Transferrin</subject><subject>Transferrin - metabolism</subject><issn>0304-4165</issn><issn>0006-3002</issn><issn>1872-8006</issn><issn>0006-3002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokPhHyCYHWwS_I69QUIVL6kSC9r1lWNfz3jIJIOdKeq_x9GUApt6Y8v-7vG59xDyktGWUabf7dq-dxscW04Za6ltKbWPyIqZjjeGUv2YrKigspFMqzPyrJQdrUtZ9ZSccWZ1ZfiKyKstrtM4Z-dxGI6Dy-t6jjH5H2ncrA9u3v5yt-spLtdjiZhzGp-TJ9ENBV_c7efk-tPHq4svzeW3z18vPlw2Xhk1N874njMtA_Ze0WCZt6HTobcOBeNMiEC980J6rVX0nnveRSFDz6VBI2UQ5-T9Sfdw7PcYPC4-BzjktHf5FiaX4P-XMW1hM92A4MZw3VWBN3cCefp5xDLDPpWlUTfidCxgOe-U0Z2q5NsHSb4Mj1ZnvKLyhPo8lZIx3htiFJZoYAenaGCJBqiFGk0te_VvM_dFf7KowOsTEN0EbpNTgevvVUEvHxvBzN95YB36TcIMxSccPYaU0c8QpvSwh980HKt4</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Mayle, Kristine M.</creator><creator>Le, Alexander M.</creator><creator>Kamei, Daniel T.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>The intracellular trafficking pathway of transferrin</title><author>Mayle, Kristine M. ; Le, Alexander M. ; Kamei, Daniel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-a8cb2164debc50d91c9d76db9ae312133d0cac34c665fcc2c27f34db248e844d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>antineoplastic agents</topic><topic>cells</topic><topic>Endocytosis</topic><topic>endosomes</topic><topic>Endosomes - metabolism</topic><topic>fluorescence</topic><topic>Humans</topic><topic>image analysis</topic><topic>Ion Transport</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>mathematical models</topic><topic>Microscopy</topic><topic>Modeling</topic><topic>physiological transport</topic><topic>Radioactivity</topic><topic>radiolabeling</topic><topic>Receptors, Transferrin - chemistry</topic><topic>Receptors, Transferrin - metabolism</topic><topic>reflectance</topic><topic>spinning disk confocal microscopy</topic><topic>SPR</topic><topic>surface plasmon resonance</topic><topic>Trafficking</topic><topic>Transferrin</topic><topic>Transferrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayle, Kristine M.</creatorcontrib><creatorcontrib>Le, Alexander M.</creatorcontrib><creatorcontrib>Kamei, Daniel T.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayle, Kristine M.</au><au>Le, Alexander M.</au><au>Kamei, Daniel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The intracellular trafficking pathway of transferrin</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>1820</volume><issue>3</issue><spage>264</spage><epage>281</epage><pages>264-281</pages><issn>0304-4165</issn><issn>0006-3002</issn><eissn>1872-8006</eissn><eissn>0006-3002</eissn><abstract>Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. ► Microscopy can be used to identify cellular components involved in Tf trafficking. ► Radioactivity and SPR can be used to characterize Tf binding and trafficking. ► Developing mathematical models enable evaluation of Tf kinetic parameters. ► Identifying design parameters can improve Tf’s ability to deliver chemotherapeutics.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21968002</pmid><doi>10.1016/j.bbagen.2011.09.009</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4165
ispartof Biochimica et biophysica acta, 2012-03, Vol.1820 (3), p.264-281
issn 0304-4165
0006-3002
1872-8006
0006-3002
language eng
recordid cdi_proquest_miscellaneous_2000002482
source MEDLINE; Elsevier ScienceDirect Journals
subjects antineoplastic agents
cells
Endocytosis
endosomes
Endosomes - metabolism
fluorescence
Humans
image analysis
Ion Transport
iron
Iron - metabolism
mathematical models
Microscopy
Modeling
physiological transport
Radioactivity
radiolabeling
Receptors, Transferrin - chemistry
Receptors, Transferrin - metabolism
reflectance
spinning disk confocal microscopy
SPR
surface plasmon resonance
Trafficking
Transferrin
Transferrin - metabolism
title The intracellular trafficking pathway of transferrin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20intracellular%20trafficking%20pathway%20of%20transferrin&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Mayle,%20Kristine%20M.&rft.date=2012-03-01&rft.volume=1820&rft.issue=3&rft.spage=264&rft.epage=281&rft.pages=264-281&rft.issn=0304-4165&rft.eissn=1872-8006&rft_id=info:doi/10.1016/j.bbagen.2011.09.009&rft_dat=%3Cproquest_pubme%3E922758675%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000002482&rft_id=info:pmid/21968002&rft_els_id=S0304416511002248&rfr_iscdi=true