Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide

The importance of identifying and quantifying subsurface geochemical reaction rates and processes by monitoring and modeling CO2 and O2 concentrations is well established. These parameters, however, are typically studied independently under presumed steady-state conditions. Here we present models of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vadose zone journal 2007-02, Vol.6 (1), p.67-76
Hauptverfasser: Birkham, T.K, Hendry, M.J, Wassenaar, L.I, Mendoza, C.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 67
container_title Vadose zone journal
container_volume 6
creator Birkham, T.K
Hendry, M.J
Wassenaar, L.I
Mendoza, C.A
description The importance of identifying and quantifying subsurface geochemical reaction rates and processes by monitoring and modeling CO2 and O2 concentrations is well established. These parameters, however, are typically studied independently under presumed steady-state conditions. Here we present models of seasonally variable vadose zone CO2 and O2 concentrations that use delta 18O of O2 as a constraint to create a dynamic link between these three parameters under transient conditions. The gas transport modeling was used to quantify the controls of biogeochemical processes and parameters (i.e., temperature and moisture content) on vadose zone distributions of CO2 and O2 gas concentrations. The investigation was conducted on a 3-m-thick, unvegetated, fine-sand vadose zone located in northern Alberta, Canada (56°40'N, 111°07'W). Using the modeled molar ratio of surface fluxes for O2 and CO2, the change in reaction rate for a temperature change of 10°C (Q10), moisture content at maximum reaction rates, and biogeochemical discrimination against consumption of 18O16O (αk), we determined that organic C oxidation by microbial respiration was the predominant mechanism consuming O2 and producing CO2. The mean αk was determined to be 0.973, suggesting that subsurface respiration was via the alternative oxidase pathway, which may be common in cold climates. Modeling revealed that the moisture content of a moist, surficial clayey sand layer (0.1-0.3 m thick) had a dramatic effect on pore-gas CO2 and O2 concentrations and on delta 18OO2. The vadose zone in this study was at an unvegetated site to simplify the model application; however, it can be modified to include root respiration and applied to natural vadose zones to help quantify the role of subsurface respiration in global O2 and C budgets.
doi_str_mv 10.2136/vzj2006.0005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19996249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19996249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4295-1dfcf7a94dac87373a4ce5930c8b286ebc330ea5d4187cd1dd9e88be22412f9d3</originalsourceid><addsrcrecordid>eNp9kDlPAzEQRlcIJM6OHlc0kOBjL5co3AqKBCQFjeW1Z1eONnawN0D49TjaFFQUoxl9ejMavSQ5JXhICcuvPn_mFON8iDHOdpIDkjE-IHnOdv_M-8lhCHOMCU9TepDM3ry0wYDt0LPT0CJXo5nULgB6dxbQC0jVGWfRi-wgoGkwtkGT73UDFj0G17llTKXVaCR9FbEb476NhuNkr5ZtgJNtP0qmd7dvo4fBeHL_OLoeD2RKeTYgulZ1IXmqpSoLVjCZKsg4w6qsaJlDpRjDIDOdkrJQmmjNoSwroDQltOaaHSXn_d2ldx8rCJ1YmKCgbaUFtwqCcM5zmvIIXvag8i4ED7VYerOQfi0IFht5YitPbORFnPf4l2lh_S8rZu9PdFMx2O5e9LsNuKCiWgVfzrdazN3K22hDRLQQmHKcbR476-laOiEbb4KYvlJMWGSyooz3fgGrBovt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19996249</pqid></control><display><type>article</type><title>Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Birkham, T.K ; Hendry, M.J ; Wassenaar, L.I ; Mendoza, C.A</creator><creatorcontrib>Birkham, T.K ; Hendry, M.J ; Wassenaar, L.I ; Mendoza, C.A</creatorcontrib><description>The importance of identifying and quantifying subsurface geochemical reaction rates and processes by monitoring and modeling CO2 and O2 concentrations is well established. These parameters, however, are typically studied independently under presumed steady-state conditions. Here we present models of seasonally variable vadose zone CO2 and O2 concentrations that use delta 18O of O2 as a constraint to create a dynamic link between these three parameters under transient conditions. The gas transport modeling was used to quantify the controls of biogeochemical processes and parameters (i.e., temperature and moisture content) on vadose zone distributions of CO2 and O2 gas concentrations. The investigation was conducted on a 3-m-thick, unvegetated, fine-sand vadose zone located in northern Alberta, Canada (56°40'N, 111°07'W). Using the modeled molar ratio of surface fluxes for O2 and CO2, the change in reaction rate for a temperature change of 10°C (Q10), moisture content at maximum reaction rates, and biogeochemical discrimination against consumption of 18O16O (αk), we determined that organic C oxidation by microbial respiration was the predominant mechanism consuming O2 and producing CO2. The mean αk was determined to be 0.973, suggesting that subsurface respiration was via the alternative oxidase pathway, which may be common in cold climates. Modeling revealed that the moisture content of a moist, surficial clayey sand layer (0.1-0.3 m thick) had a dramatic effect on pore-gas CO2 and O2 concentrations and on delta 18OO2. The vadose zone in this study was at an unvegetated site to simplify the model application; however, it can be modified to include root respiration and applied to natural vadose zones to help quantify the role of subsurface respiration in global O2 and C budgets.</description><identifier>ISSN: 1539-1663</identifier><identifier>EISSN: 1539-1663</identifier><identifier>DOI: 10.2136/vzj2006.0005</identifier><language>eng</language><publisher>Madison: Soil Science Society of America</publisher><subject>Alberta ; biogenic processes ; biogeochemical cycles ; biological activity in soil ; Canada ; carbon ; carbon cycle ; carbon dioxide ; cell respiration ; Environmental geology ; geochemical cycle ; Geochemistry ; ground water ; hydrologic cycle ; hydrology ; inorganic materials ; isotope labeling ; isotope ratios ; isotopes ; mathematical models ; measurement ; northern Alberta ; O-18/O-16 ; organic compounds ; oxidation ; oxygen ; quantitative analysis ; reclamation ; remediation ; sand ; soil air ; soil gases ; soil microorganisms ; soil organic carbon ; soils ; stable isotopes ; Syncrude Canada Mine ; tailings ; total organic carbon ; transient phenomena ; unsaturated zone ; vadose zone ; water table ; Western Canada</subject><ispartof>Vadose zone journal, 2007-02, Vol.6 (1), p.67-76</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Soil Science Society of America</rights><rights>Soil Science Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4295-1dfcf7a94dac87373a4ce5930c8b286ebc330ea5d4187cd1dd9e88be22412f9d3</citedby><cites>FETCH-LOGICAL-a4295-1dfcf7a94dac87373a4ce5930c8b286ebc330ea5d4187cd1dd9e88be22412f9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2136%2Fvzj2006.0005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2136%2Fvzj2006.0005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27902,27903,45552,45553</link.rule.ids></links><search><creatorcontrib>Birkham, T.K</creatorcontrib><creatorcontrib>Hendry, M.J</creatorcontrib><creatorcontrib>Wassenaar, L.I</creatorcontrib><creatorcontrib>Mendoza, C.A</creatorcontrib><title>Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide</title><title>Vadose zone journal</title><description>The importance of identifying and quantifying subsurface geochemical reaction rates and processes by monitoring and modeling CO2 and O2 concentrations is well established. These parameters, however, are typically studied independently under presumed steady-state conditions. Here we present models of seasonally variable vadose zone CO2 and O2 concentrations that use delta 18O of O2 as a constraint to create a dynamic link between these three parameters under transient conditions. The gas transport modeling was used to quantify the controls of biogeochemical processes and parameters (i.e., temperature and moisture content) on vadose zone distributions of CO2 and O2 gas concentrations. The investigation was conducted on a 3-m-thick, unvegetated, fine-sand vadose zone located in northern Alberta, Canada (56°40'N, 111°07'W). Using the modeled molar ratio of surface fluxes for O2 and CO2, the change in reaction rate for a temperature change of 10°C (Q10), moisture content at maximum reaction rates, and biogeochemical discrimination against consumption of 18O16O (αk), we determined that organic C oxidation by microbial respiration was the predominant mechanism consuming O2 and producing CO2. The mean αk was determined to be 0.973, suggesting that subsurface respiration was via the alternative oxidase pathway, which may be common in cold climates. Modeling revealed that the moisture content of a moist, surficial clayey sand layer (0.1-0.3 m thick) had a dramatic effect on pore-gas CO2 and O2 concentrations and on delta 18OO2. The vadose zone in this study was at an unvegetated site to simplify the model application; however, it can be modified to include root respiration and applied to natural vadose zones to help quantify the role of subsurface respiration in global O2 and C budgets.</description><subject>Alberta</subject><subject>biogenic processes</subject><subject>biogeochemical cycles</subject><subject>biological activity in soil</subject><subject>Canada</subject><subject>carbon</subject><subject>carbon cycle</subject><subject>carbon dioxide</subject><subject>cell respiration</subject><subject>Environmental geology</subject><subject>geochemical cycle</subject><subject>Geochemistry</subject><subject>ground water</subject><subject>hydrologic cycle</subject><subject>hydrology</subject><subject>inorganic materials</subject><subject>isotope labeling</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>mathematical models</subject><subject>measurement</subject><subject>northern Alberta</subject><subject>O-18/O-16</subject><subject>organic compounds</subject><subject>oxidation</subject><subject>oxygen</subject><subject>quantitative analysis</subject><subject>reclamation</subject><subject>remediation</subject><subject>sand</subject><subject>soil air</subject><subject>soil gases</subject><subject>soil microorganisms</subject><subject>soil organic carbon</subject><subject>soils</subject><subject>stable isotopes</subject><subject>Syncrude Canada Mine</subject><subject>tailings</subject><subject>total organic carbon</subject><subject>transient phenomena</subject><subject>unsaturated zone</subject><subject>vadose zone</subject><subject>water table</subject><subject>Western Canada</subject><issn>1539-1663</issn><issn>1539-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQRlcIJM6OHlc0kOBjL5co3AqKBCQFjeW1Z1eONnawN0D49TjaFFQUoxl9ejMavSQ5JXhICcuvPn_mFON8iDHOdpIDkjE-IHnOdv_M-8lhCHOMCU9TepDM3ry0wYDt0LPT0CJXo5nULgB6dxbQC0jVGWfRi-wgoGkwtkGT73UDFj0G17llTKXVaCR9FbEb476NhuNkr5ZtgJNtP0qmd7dvo4fBeHL_OLoeD2RKeTYgulZ1IXmqpSoLVjCZKsg4w6qsaJlDpRjDIDOdkrJQmmjNoSwroDQltOaaHSXn_d2ldx8rCJ1YmKCgbaUFtwqCcM5zmvIIXvag8i4ED7VYerOQfi0IFht5YitPbORFnPf4l2lh_S8rZu9PdFMx2O5e9LsNuKCiWgVfzrdazN3K22hDRLQQmHKcbR476-laOiEbb4KYvlJMWGSyooz3fgGrBovt</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Birkham, T.K</creator><creator>Hendry, M.J</creator><creator>Wassenaar, L.I</creator><creator>Mendoza, C.A</creator><general>Soil Science Society of America</general><general>Soil Science Society</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200702</creationdate><title>Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide</title><author>Birkham, T.K ; Hendry, M.J ; Wassenaar, L.I ; Mendoza, C.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4295-1dfcf7a94dac87373a4ce5930c8b286ebc330ea5d4187cd1dd9e88be22412f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alberta</topic><topic>biogenic processes</topic><topic>biogeochemical cycles</topic><topic>biological activity in soil</topic><topic>Canada</topic><topic>carbon</topic><topic>carbon cycle</topic><topic>carbon dioxide</topic><topic>cell respiration</topic><topic>Environmental geology</topic><topic>geochemical cycle</topic><topic>Geochemistry</topic><topic>ground water</topic><topic>hydrologic cycle</topic><topic>hydrology</topic><topic>inorganic materials</topic><topic>isotope labeling</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>mathematical models</topic><topic>measurement</topic><topic>northern Alberta</topic><topic>O-18/O-16</topic><topic>organic compounds</topic><topic>oxidation</topic><topic>oxygen</topic><topic>quantitative analysis</topic><topic>reclamation</topic><topic>remediation</topic><topic>sand</topic><topic>soil air</topic><topic>soil gases</topic><topic>soil microorganisms</topic><topic>soil organic carbon</topic><topic>soils</topic><topic>stable isotopes</topic><topic>Syncrude Canada Mine</topic><topic>tailings</topic><topic>total organic carbon</topic><topic>transient phenomena</topic><topic>unsaturated zone</topic><topic>vadose zone</topic><topic>water table</topic><topic>Western Canada</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkham, T.K</creatorcontrib><creatorcontrib>Hendry, M.J</creatorcontrib><creatorcontrib>Wassenaar, L.I</creatorcontrib><creatorcontrib>Mendoza, C.A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Vadose zone journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkham, T.K</au><au>Hendry, M.J</au><au>Wassenaar, L.I</au><au>Mendoza, C.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide</atitle><jtitle>Vadose zone journal</jtitle><date>2007-02</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>1539-1663</issn><eissn>1539-1663</eissn><abstract>The importance of identifying and quantifying subsurface geochemical reaction rates and processes by monitoring and modeling CO2 and O2 concentrations is well established. These parameters, however, are typically studied independently under presumed steady-state conditions. Here we present models of seasonally variable vadose zone CO2 and O2 concentrations that use delta 18O of O2 as a constraint to create a dynamic link between these three parameters under transient conditions. The gas transport modeling was used to quantify the controls of biogeochemical processes and parameters (i.e., temperature and moisture content) on vadose zone distributions of CO2 and O2 gas concentrations. The investigation was conducted on a 3-m-thick, unvegetated, fine-sand vadose zone located in northern Alberta, Canada (56°40'N, 111°07'W). Using the modeled molar ratio of surface fluxes for O2 and CO2, the change in reaction rate for a temperature change of 10°C (Q10), moisture content at maximum reaction rates, and biogeochemical discrimination against consumption of 18O16O (αk), we determined that organic C oxidation by microbial respiration was the predominant mechanism consuming O2 and producing CO2. The mean αk was determined to be 0.973, suggesting that subsurface respiration was via the alternative oxidase pathway, which may be common in cold climates. Modeling revealed that the moisture content of a moist, surficial clayey sand layer (0.1-0.3 m thick) had a dramatic effect on pore-gas CO2 and O2 concentrations and on delta 18OO2. The vadose zone in this study was at an unvegetated site to simplify the model application; however, it can be modified to include root respiration and applied to natural vadose zones to help quantify the role of subsurface respiration in global O2 and C budgets.</abstract><cop>Madison</cop><pub>Soil Science Society of America</pub><doi>10.2136/vzj2006.0005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-1663
ispartof Vadose zone journal, 2007-02, Vol.6 (1), p.67-76
issn 1539-1663
1539-1663
language eng
recordid cdi_proquest_miscellaneous_19996249
source Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Alberta
biogenic processes
biogeochemical cycles
biological activity in soil
Canada
carbon
carbon cycle
carbon dioxide
cell respiration
Environmental geology
geochemical cycle
Geochemistry
ground water
hydrologic cycle
hydrology
inorganic materials
isotope labeling
isotope ratios
isotopes
mathematical models
measurement
northern Alberta
O-18/O-16
organic compounds
oxidation
oxygen
quantitative analysis
reclamation
remediation
sand
soil air
soil gases
soil microorganisms
soil organic carbon
soils
stable isotopes
Syncrude Canada Mine
tailings
total organic carbon
transient phenomena
unsaturated zone
vadose zone
water table
Western Canada
title Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Model%20of%20Vadose%20Zone%20Reaction%20Rates%20Using%20Oxygen%20Isotopes%20and%20Carbon%20Dioxide&rft.jtitle=Vadose%20zone%20journal&rft.au=Birkham,%20T.K&rft.date=2007-02&rft.volume=6&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=1539-1663&rft.eissn=1539-1663&rft_id=info:doi/10.2136/vzj2006.0005&rft_dat=%3Cproquest_cross%3E19996249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19996249&rft_id=info:pmid/&rfr_iscdi=true