Assessing Degradation Rates of Chlorinated Ethylenes in Column Experiments with Commercial Iron Materials Used in Permeable Reactive Barriers

Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2006-03, Vol.40 (6), p.2004-2010
Hauptverfasser: Ebert, Markus, Köber, Ralf, Parbs, Anika, Plagentz, Volkmar, Schäfer, Dirk, Dahmke, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron granules or altered iron material excavated from PRBs. The determination of first-order rate coefficients by global nonlinear least-squares fittings indicated a variability in rate coefficients on 1 or 2 orders of magnitude. Geometric mean values of surface area normalized rate coefficients (in 10-5 L m-2 h-1) for fresh gray cast iron and iron sponge, respectively, are:  tetrachloroethene (4.5, 2.6), trichloroethene (8.1, 3.3), cis-1,2-dichloroethene (3.1, 2.9), trans-1,2-dichloroethene (9.5, 5.3), 1,1-dichloroethene (4.0, 4.4), and vinyl chloride (1.6, 6.1). The increasing rate coefficients with decreasing grade of chlorination, which characterize degradation at iron sponge are linearly related to diffusion coefficients in water, suggesting diffusion limitation in the degradation process for this particular material, possibly due to a high inner surface. The variability in rate coefficients seems to be too high to use mean rate coefficients from published studies in the design procedure of PRBs, and variabilities cannot be related to groundwater characteristics, water flow through the reactive cells, or secondary corrosion reactions.
ISSN:0013-936X
1520-5851
DOI:10.1021/es051720e