Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate

Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:African journal of biotechnology 2007-01, Vol.6 (1), p.41-46
Hauptverfasser: Muthuvelayudham, R, Viruthagiri, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 41
container_title African journal of biotechnology
container_volume 6
creator Muthuvelayudham, R
Viruthagiri, T
description Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_19995061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19995061</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-bb8efa406d9a7c1166fca905dda84d62d75ade8665c704a3ea86ec725bc3756c3</originalsourceid><addsrcrecordid>eNpNj01LxDAYhIMouK7-h_fkrZA0TZoepfgFCwuynpe3yVuNNO2aDxB_vbvowdPMYZ5h5oythDZNpaRQ5__8JbtK6YPzWtYNXzG3PWQf_Ddmv8yAs4OwOJr8_AbLCJamqUyYCA5xyeRnGOMSYBe9fT_GYkCIRIk8vJQMveRQ0gkN_oscpDKkHDHTNbsYcUp086dr9vpwv-ufqs328bm_21QHYXSuhsHQiA3XrsPWCqH1aLHjyjk0jdO1axU6Mlor2_IGJaHRZNtaDVa2Slu5Zre_vce1n4VS3gefTh9wpqWkvei6TnEt5A8RyFYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19995061</pqid></control><display><type>article</type><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Muthuvelayudham, R ; Viruthagiri, T</creator><creatorcontrib>Muthuvelayudham, R ; Viruthagiri, T</creatorcontrib><description>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</description><identifier>ISSN: 1684-5315</identifier><identifier>EISSN: 1684-5315</identifier><language>eng</language><subject>Hypocrea jecorina</subject><ispartof>African journal of biotechnology, 2007-01, Vol.6 (1), p.41-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Muthuvelayudham, R</creatorcontrib><creatorcontrib>Viruthagiri, T</creatorcontrib><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><title>African journal of biotechnology</title><description>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</description><subject>Hypocrea jecorina</subject><issn>1684-5315</issn><issn>1684-5315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNj01LxDAYhIMouK7-h_fkrZA0TZoepfgFCwuynpe3yVuNNO2aDxB_vbvowdPMYZ5h5oythDZNpaRQ5__8JbtK6YPzWtYNXzG3PWQf_Ddmv8yAs4OwOJr8_AbLCJamqUyYCA5xyeRnGOMSYBe9fT_GYkCIRIk8vJQMveRQ0gkN_oscpDKkHDHTNbsYcUp086dr9vpwv-ufqs328bm_21QHYXSuhsHQiA3XrsPWCqH1aLHjyjk0jdO1axU6Mlor2_IGJaHRZNtaDVa2Slu5Zre_vce1n4VS3gefTh9wpqWkvei6TnEt5A8RyFYW</recordid><startdate>20070104</startdate><enddate>20070104</enddate><creator>Muthuvelayudham, R</creator><creator>Viruthagiri, T</creator><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20070104</creationdate><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><author>Muthuvelayudham, R ; Viruthagiri, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-bb8efa406d9a7c1166fca905dda84d62d75ade8665c704a3ea86ec725bc3756c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Hypocrea jecorina</topic><toplevel>online_resources</toplevel><creatorcontrib>Muthuvelayudham, R</creatorcontrib><creatorcontrib>Viruthagiri, T</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>African journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthuvelayudham, R</au><au>Viruthagiri, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</atitle><jtitle>African journal of biotechnology</jtitle><date>2007-01-04</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>1684-5315</issn><eissn>1684-5315</eissn><abstract>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</abstract><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1684-5315
ispartof African journal of biotechnology, 2007-01, Vol.6 (1), p.41-46
issn 1684-5315
1684-5315
language eng
recordid cdi_proquest_miscellaneous_19995061
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Hypocrea jecorina
title Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20modeling%20of%20cellulase%20protein%20from%20Trichoderma%20reesei%20Rut%20C30%20using%20mixed%20substrate&rft.jtitle=African%20journal%20of%20biotechnology&rft.au=Muthuvelayudham,%20R&rft.date=2007-01-04&rft.volume=6&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=1684-5315&rft.eissn=1684-5315&rft_id=info:doi/&rft_dat=%3Cproquest%3E19995061%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19995061&rft_id=info:pmid/&rfr_iscdi=true