Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate
Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase p...
Gespeichert in:
Veröffentlicht in: | African journal of biotechnology 2007-01, Vol.6 (1), p.41-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | African journal of biotechnology |
container_volume | 6 |
creator | Muthuvelayudham, R Viruthagiri, T |
description | Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_19995061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19995061</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-bb8efa406d9a7c1166fca905dda84d62d75ade8665c704a3ea86ec725bc3756c3</originalsourceid><addsrcrecordid>eNpNj01LxDAYhIMouK7-h_fkrZA0TZoepfgFCwuynpe3yVuNNO2aDxB_vbvowdPMYZ5h5oythDZNpaRQ5__8JbtK6YPzWtYNXzG3PWQf_Ddmv8yAs4OwOJr8_AbLCJamqUyYCA5xyeRnGOMSYBe9fT_GYkCIRIk8vJQMveRQ0gkN_oscpDKkHDHTNbsYcUp086dr9vpwv-ufqs328bm_21QHYXSuhsHQiA3XrsPWCqH1aLHjyjk0jdO1axU6Mlor2_IGJaHRZNtaDVa2Slu5Zre_vce1n4VS3gefTh9wpqWkvei6TnEt5A8RyFYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19995061</pqid></control><display><type>article</type><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Muthuvelayudham, R ; Viruthagiri, T</creator><creatorcontrib>Muthuvelayudham, R ; Viruthagiri, T</creatorcontrib><description>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</description><identifier>ISSN: 1684-5315</identifier><identifier>EISSN: 1684-5315</identifier><language>eng</language><subject>Hypocrea jecorina</subject><ispartof>African journal of biotechnology, 2007-01, Vol.6 (1), p.41-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Muthuvelayudham, R</creatorcontrib><creatorcontrib>Viruthagiri, T</creatorcontrib><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><title>African journal of biotechnology</title><description>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</description><subject>Hypocrea jecorina</subject><issn>1684-5315</issn><issn>1684-5315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNj01LxDAYhIMouK7-h_fkrZA0TZoepfgFCwuynpe3yVuNNO2aDxB_vbvowdPMYZ5h5oythDZNpaRQ5__8JbtK6YPzWtYNXzG3PWQf_Ddmv8yAs4OwOJr8_AbLCJamqUyYCA5xyeRnGOMSYBe9fT_GYkCIRIk8vJQMveRQ0gkN_oscpDKkHDHTNbsYcUp086dr9vpwv-ufqs328bm_21QHYXSuhsHQiA3XrsPWCqH1aLHjyjk0jdO1axU6Mlor2_IGJaHRZNtaDVa2Slu5Zre_vce1n4VS3gefTh9wpqWkvei6TnEt5A8RyFYW</recordid><startdate>20070104</startdate><enddate>20070104</enddate><creator>Muthuvelayudham, R</creator><creator>Viruthagiri, T</creator><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20070104</creationdate><title>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</title><author>Muthuvelayudham, R ; Viruthagiri, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-bb8efa406d9a7c1166fca905dda84d62d75ade8665c704a3ea86ec725bc3756c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Hypocrea jecorina</topic><toplevel>online_resources</toplevel><creatorcontrib>Muthuvelayudham, R</creatorcontrib><creatorcontrib>Viruthagiri, T</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>African journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthuvelayudham, R</au><au>Viruthagiri, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate</atitle><jtitle>African journal of biotechnology</jtitle><date>2007-01-04</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>1684-5315</issn><eissn>1684-5315</eissn><abstract>Bioethanol from cellulosic raw material has proved to be the best alternative renewable energy source. Cellulase is a multienzyme complex catalyses the bioconversion of cellulose to glucose, which can be used for ethanol production. The objective of this research is to reduce the cost of cellulase production by optimization of fermentation conditions and modeling of the fermentation process. Research surface methodology was suggested for optimization of process conditions of cellulase biosynthesis. Logistic kinetic model was the best model for the mixed substrates. A conceptual Artificial Neural Network (ANN) model was well incorporated in the fermentative production of cellulase. By adopting these models high yield of cellulase was obtained.</abstract><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1684-5315 |
ispartof | African journal of biotechnology, 2007-01, Vol.6 (1), p.41-46 |
issn | 1684-5315 1684-5315 |
language | eng |
recordid | cdi_proquest_miscellaneous_19995061 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Hypocrea jecorina |
title | Optimization and modeling of cellulase protein from Trichoderma reesei Rut C30 using mixed substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20modeling%20of%20cellulase%20protein%20from%20Trichoderma%20reesei%20Rut%20C30%20using%20mixed%20substrate&rft.jtitle=African%20journal%20of%20biotechnology&rft.au=Muthuvelayudham,%20R&rft.date=2007-01-04&rft.volume=6&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=1684-5315&rft.eissn=1684-5315&rft_id=info:doi/&rft_dat=%3Cproquest%3E19995061%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19995061&rft_id=info:pmid/&rfr_iscdi=true |