Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots

Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improveme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-03, Vol.30 (13), p.e1705913-n/a
Hauptverfasser: Li, Di, Jing, Pengtao, Sun, Lihuan, An, Yang, Shan, Xinyan, Lu, Xinghua, Zhou, Ding, Han, Dong, Shen, Dezhen, Zhai, Yuechen, Qu, Songnan, Zbořil, Radek, Rogach, Andrey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e1705913
container_title Advanced materials (Weinheim)
container_volume 30
creator Li, Di
Jing, Pengtao
Sun, Lihuan
An, Yang
Shan, Xinyan
Lu, Xinghua
Zhou, Ding
Han, Dong
Shen, Dezhen
Zhai, Yuechen
Qu, Songnan
Zbořil, Radek
Rogach, Andrey L.
description Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents. Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.
doi_str_mv 10.1002/adma.201705913
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1999199956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999199956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EglJYGVEkFpa0vsROPFZtgUpcFhiYLMcXEZTExU4EbDwCz8iT4NICEgvDkY-s7_z69QFwhOAIQYjHUjdyhCHKIeWIbIEBohilGeR0GwwgJzTlLCv2wH4IjxBCziDbBXuYZwhlGRmA-2sj_cfb-6K1Xnqjk_mLqjrZVa4dz5sqhLgkstXJVV931fLBda79wnWvIn1W986boEyrTOJsMpW-jAcz14UDsGNlHczh5h2Cu7P57fQivbw5X0wnl6kiOSGpsijDFEnFJc0ssQRiXSJNIaNFUcicIQJ1bMuswoRTwwixBdOcktLi-E2G4HSdu_TuqTehE7G2MnUtW-P6IBDnfDV0hZ78QR9d79vYTkSFPM8wZ3mkRmtKeReCN1YsfdVI_yoQFCvpYiVd_EiPB8eb2L5sjP7Bvy1HgK-B56o2r__EicnsavIb_glv2o5f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742967</pqid></control><display><type>article</type><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><source>Wiley Online Library All Journals</source><creator>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</creator><creatorcontrib>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</creatorcontrib><description>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents. Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201705913</identifier><identifier>PMID: 29411443</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Biomedical materials ; Carbon dots ; Carbonyl groups ; Carbonyls ; Dimethyl sulfoxide ; Electron transitions ; Emission analysis ; Encryption ; Energy gap ; Excitation ; Fluorescence ; Materials science ; Medical imaging ; multiphoton‐induced fluorescence ; near‐infrared absorption ; near‐infrared fluorescence ; Optoelectronics ; Penetration depth ; Stomach ; Sulfoxides ; surface engineering</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1705913-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</citedby><cites>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</cites><orcidid>0000-0002-8263-8141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201705913$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201705913$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Di</creatorcontrib><creatorcontrib>Jing, Pengtao</creatorcontrib><creatorcontrib>Sun, Lihuan</creatorcontrib><creatorcontrib>An, Yang</creatorcontrib><creatorcontrib>Shan, Xinyan</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Shen, Dezhen</creatorcontrib><creatorcontrib>Zhai, Yuechen</creatorcontrib><creatorcontrib>Qu, Songnan</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents. Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</description><subject>Absorption spectra</subject><subject>Biomedical materials</subject><subject>Carbon dots</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Dimethyl sulfoxide</subject><subject>Electron transitions</subject><subject>Emission analysis</subject><subject>Encryption</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Materials science</subject><subject>Medical imaging</subject><subject>multiphoton‐induced fluorescence</subject><subject>near‐infrared absorption</subject><subject>near‐infrared fluorescence</subject><subject>Optoelectronics</subject><subject>Penetration depth</subject><subject>Stomach</subject><subject>Sulfoxides</subject><subject>surface engineering</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EglJYGVEkFpa0vsROPFZtgUpcFhiYLMcXEZTExU4EbDwCz8iT4NICEgvDkY-s7_z69QFwhOAIQYjHUjdyhCHKIeWIbIEBohilGeR0GwwgJzTlLCv2wH4IjxBCziDbBXuYZwhlGRmA-2sj_cfb-6K1Xnqjk_mLqjrZVa4dz5sqhLgkstXJVV931fLBda79wnWvIn1W986boEyrTOJsMpW-jAcz14UDsGNlHczh5h2Cu7P57fQivbw5X0wnl6kiOSGpsijDFEnFJc0ssQRiXSJNIaNFUcicIQJ1bMuswoRTwwixBdOcktLi-E2G4HSdu_TuqTehE7G2MnUtW-P6IBDnfDV0hZ78QR9d79vYTkSFPM8wZ3mkRmtKeReCN1YsfdVI_yoQFCvpYiVd_EiPB8eb2L5sjP7Bvy1HgK-B56o2r__EicnsavIb_glv2o5f</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Li, Di</creator><creator>Jing, Pengtao</creator><creator>Sun, Lihuan</creator><creator>An, Yang</creator><creator>Shan, Xinyan</creator><creator>Lu, Xinghua</creator><creator>Zhou, Ding</creator><creator>Han, Dong</creator><creator>Shen, Dezhen</creator><creator>Zhai, Yuechen</creator><creator>Qu, Songnan</creator><creator>Zbořil, Radek</creator><creator>Rogach, Andrey L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></search><sort><creationdate>201803</creationdate><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><author>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Biomedical materials</topic><topic>Carbon dots</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Dimethyl sulfoxide</topic><topic>Electron transitions</topic><topic>Emission analysis</topic><topic>Encryption</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Materials science</topic><topic>Medical imaging</topic><topic>multiphoton‐induced fluorescence</topic><topic>near‐infrared absorption</topic><topic>near‐infrared fluorescence</topic><topic>Optoelectronics</topic><topic>Penetration depth</topic><topic>Stomach</topic><topic>Sulfoxides</topic><topic>surface engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Di</creatorcontrib><creatorcontrib>Jing, Pengtao</creatorcontrib><creatorcontrib>Sun, Lihuan</creatorcontrib><creatorcontrib>An, Yang</creatorcontrib><creatorcontrib>Shan, Xinyan</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Shen, Dezhen</creatorcontrib><creatorcontrib>Zhai, Yuechen</creatorcontrib><creatorcontrib>Qu, Songnan</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Di</au><au>Jing, Pengtao</au><au>Sun, Lihuan</au><au>An, Yang</au><au>Shan, Xinyan</au><au>Lu, Xinghua</au><au>Zhou, Ding</au><au>Han, Dong</au><au>Shen, Dezhen</au><au>Zhai, Yuechen</au><au>Qu, Songnan</au><au>Zbořil, Radek</au><au>Rogach, Andrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>13</issue><spage>e1705913</spage><epage>n/a</epage><pages>e1705913-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents. Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29411443</pmid><doi>10.1002/adma.201705913</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1705913-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1999199956
source Wiley Online Library All Journals
subjects Absorption spectra
Biomedical materials
Carbon dots
Carbonyl groups
Carbonyls
Dimethyl sulfoxide
Electron transitions
Emission analysis
Encryption
Energy gap
Excitation
Fluorescence
Materials science
Medical imaging
multiphoton‐induced fluorescence
near‐infrared absorption
near‐infrared fluorescence
Optoelectronics
Penetration depth
Stomach
Sulfoxides
surface engineering
title Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Excitation/Emission%20and%20Multiphoton%E2%80%90Induced%20Fluorescence%20of%20Carbon%20Dots&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Di&rft.date=2018-03&rft.volume=30&rft.issue=13&rft.spage=e1705913&rft.epage=n/a&rft.pages=e1705913-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201705913&rft_dat=%3Cproquest_cross%3E1999199956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742967&rft_id=info:pmid/29411443&rfr_iscdi=true