Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots
Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improveme...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-03, Vol.30 (13), p.e1705913-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e1705913 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Li, Di Jing, Pengtao Sun, Lihuan An, Yang Shan, Xinyan Lu, Xinghua Zhou, Ding Han, Dong Shen, Dezhen Zhai, Yuechen Qu, Songnan Zbořil, Radek Rogach, Andrey L. |
description | Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents.
Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window. |
doi_str_mv | 10.1002/adma.201705913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1999199956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999199956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EglJYGVEkFpa0vsROPFZtgUpcFhiYLMcXEZTExU4EbDwCz8iT4NICEgvDkY-s7_z69QFwhOAIQYjHUjdyhCHKIeWIbIEBohilGeR0GwwgJzTlLCv2wH4IjxBCziDbBXuYZwhlGRmA-2sj_cfb-6K1Xnqjk_mLqjrZVa4dz5sqhLgkstXJVV931fLBda79wnWvIn1W986boEyrTOJsMpW-jAcz14UDsGNlHczh5h2Cu7P57fQivbw5X0wnl6kiOSGpsijDFEnFJc0ssQRiXSJNIaNFUcicIQJ1bMuswoRTwwixBdOcktLi-E2G4HSdu_TuqTehE7G2MnUtW-P6IBDnfDV0hZ78QR9d79vYTkSFPM8wZ3mkRmtKeReCN1YsfdVI_yoQFCvpYiVd_EiPB8eb2L5sjP7Bvy1HgK-B56o2r__EicnsavIb_glv2o5f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742967</pqid></control><display><type>article</type><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><source>Wiley Online Library All Journals</source><creator>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</creator><creatorcontrib>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</creatorcontrib><description>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents.
Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201705913</identifier><identifier>PMID: 29411443</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Biomedical materials ; Carbon dots ; Carbonyl groups ; Carbonyls ; Dimethyl sulfoxide ; Electron transitions ; Emission analysis ; Encryption ; Energy gap ; Excitation ; Fluorescence ; Materials science ; Medical imaging ; multiphoton‐induced fluorescence ; near‐infrared absorption ; near‐infrared fluorescence ; Optoelectronics ; Penetration depth ; Stomach ; Sulfoxides ; surface engineering</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1705913-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</citedby><cites>FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</cites><orcidid>0000-0002-8263-8141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201705913$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201705913$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Di</creatorcontrib><creatorcontrib>Jing, Pengtao</creatorcontrib><creatorcontrib>Sun, Lihuan</creatorcontrib><creatorcontrib>An, Yang</creatorcontrib><creatorcontrib>Shan, Xinyan</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Shen, Dezhen</creatorcontrib><creatorcontrib>Zhai, Yuechen</creatorcontrib><creatorcontrib>Qu, Songnan</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents.
Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</description><subject>Absorption spectra</subject><subject>Biomedical materials</subject><subject>Carbon dots</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Dimethyl sulfoxide</subject><subject>Electron transitions</subject><subject>Emission analysis</subject><subject>Encryption</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Materials science</subject><subject>Medical imaging</subject><subject>multiphoton‐induced fluorescence</subject><subject>near‐infrared absorption</subject><subject>near‐infrared fluorescence</subject><subject>Optoelectronics</subject><subject>Penetration depth</subject><subject>Stomach</subject><subject>Sulfoxides</subject><subject>surface engineering</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EglJYGVEkFpa0vsROPFZtgUpcFhiYLMcXEZTExU4EbDwCz8iT4NICEgvDkY-s7_z69QFwhOAIQYjHUjdyhCHKIeWIbIEBohilGeR0GwwgJzTlLCv2wH4IjxBCziDbBXuYZwhlGRmA-2sj_cfb-6K1Xnqjk_mLqjrZVa4dz5sqhLgkstXJVV931fLBda79wnWvIn1W986boEyrTOJsMpW-jAcz14UDsGNlHczh5h2Cu7P57fQivbw5X0wnl6kiOSGpsijDFEnFJc0ssQRiXSJNIaNFUcicIQJ1bMuswoRTwwixBdOcktLi-E2G4HSdu_TuqTehE7G2MnUtW-P6IBDnfDV0hZ78QR9d79vYTkSFPM8wZ3mkRmtKeReCN1YsfdVI_yoQFCvpYiVd_EiPB8eb2L5sjP7Bvy1HgK-B56o2r__EicnsavIb_glv2o5f</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Li, Di</creator><creator>Jing, Pengtao</creator><creator>Sun, Lihuan</creator><creator>An, Yang</creator><creator>Shan, Xinyan</creator><creator>Lu, Xinghua</creator><creator>Zhou, Ding</creator><creator>Han, Dong</creator><creator>Shen, Dezhen</creator><creator>Zhai, Yuechen</creator><creator>Qu, Songnan</creator><creator>Zbořil, Radek</creator><creator>Rogach, Andrey L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></search><sort><creationdate>201803</creationdate><title>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</title><author>Li, Di ; Jing, Pengtao ; Sun, Lihuan ; An, Yang ; Shan, Xinyan ; Lu, Xinghua ; Zhou, Ding ; Han, Dong ; Shen, Dezhen ; Zhai, Yuechen ; Qu, Songnan ; Zbořil, Radek ; Rogach, Andrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-cf14251ac9a54f3f302db1d5065888a76130d4116fc2395e633f86d953bf21163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Biomedical materials</topic><topic>Carbon dots</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Dimethyl sulfoxide</topic><topic>Electron transitions</topic><topic>Emission analysis</topic><topic>Encryption</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Materials science</topic><topic>Medical imaging</topic><topic>multiphoton‐induced fluorescence</topic><topic>near‐infrared absorption</topic><topic>near‐infrared fluorescence</topic><topic>Optoelectronics</topic><topic>Penetration depth</topic><topic>Stomach</topic><topic>Sulfoxides</topic><topic>surface engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Di</creatorcontrib><creatorcontrib>Jing, Pengtao</creatorcontrib><creatorcontrib>Sun, Lihuan</creatorcontrib><creatorcontrib>An, Yang</creatorcontrib><creatorcontrib>Shan, Xinyan</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>Han, Dong</creatorcontrib><creatorcontrib>Shen, Dezhen</creatorcontrib><creatorcontrib>Zhai, Yuechen</creatorcontrib><creatorcontrib>Qu, Songnan</creatorcontrib><creatorcontrib>Zbořil, Radek</creatorcontrib><creatorcontrib>Rogach, Andrey L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Di</au><au>Jing, Pengtao</au><au>Sun, Lihuan</au><au>An, Yang</au><au>Shan, Xinyan</au><au>Lu, Xinghua</au><au>Zhou, Ding</au><au>Han, Dong</au><au>Shen, Dezhen</au><au>Zhai, Yuechen</au><au>Qu, Songnan</au><au>Zbořil, Radek</au><au>Rogach, Andrey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>13</issue><spage>e1705913</spage><epage>n/a</epage><pages>e1705913-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near‐infrared (NIR‐I and NIR‐II) windows remains an issue. Solving this problem would yield significant improvement in the tissue‐penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron‐acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR‐imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two‐photon‐induced NIR emission and three‐photon‐induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR‐I excitation and emission as well as two‐photon‐ and three‐photon‐induced fluorescence of CDs excited in an NIR‐II window, and provides a rational design approach for construction and clinical applications of CD‐based NIR imaging agents.
Both near‐infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two‐photon‐induced NIR emission and three‐photon‐induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR‐II window.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29411443</pmid><doi>10.1002/adma.201705913</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8263-8141</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1705913-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1999199956 |
source | Wiley Online Library All Journals |
subjects | Absorption spectra Biomedical materials Carbon dots Carbonyl groups Carbonyls Dimethyl sulfoxide Electron transitions Emission analysis Encryption Energy gap Excitation Fluorescence Materials science Medical imaging multiphoton‐induced fluorescence near‐infrared absorption near‐infrared fluorescence Optoelectronics Penetration depth Stomach Sulfoxides surface engineering |
title | Near‐Infrared Excitation/Emission and Multiphoton‐Induced Fluorescence of Carbon Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Excitation/Emission%20and%20Multiphoton%E2%80%90Induced%20Fluorescence%20of%20Carbon%20Dots&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Di&rft.date=2018-03&rft.volume=30&rft.issue=13&rft.spage=e1705913&rft.epage=n/a&rft.pages=e1705913-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201705913&rft_dat=%3Cproquest_cross%3E1999199956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742967&rft_id=info:pmid/29411443&rfr_iscdi=true |