Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure

Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-01, Vol.10 (11), p.5047-5053
Hauptverfasser: Park, Hye Jin, Jo, Yejin, Cho, Min Kyung, Young Woo, Jeong, Kim, Dojin, Lee, Su Yeon, Choi, Youngmin, Jeong, Sunho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5053
container_issue 11
container_start_page 5047
container_title Nanoscale
container_volume 10
creator Park, Hye Jin
Jo, Yejin
Cho, Min Kyung
Young Woo, Jeong
Kim, Dojin
Lee, Su Yeon
Choi, Youngmin
Jeong, Sunho
description Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu Sn core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.
doi_str_mv 10.1039/c8nr00200b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1999199953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014122341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMonm98AAl4I2J1cti28U4XTyAKotclTafa3TRdkxbcR_CtzbqrF14MmcDHl5n8hBwwOGMg1LnJnQfgAOUa2eYgIREi4-t_fSq3yE4IE4BUiVRski2uJGO5zLfJ113z9m7ntBq8Li3S8ZCUOmBF0aLpfVdhoLXvWqrpzDeu_4Gcdt1M-74x8dI2n_3gkTZuekFrq8N7YqOzT0LE0WN1SqeNwwhra-eJ6VzUWhufaBvju9D7wSwEe2Sj1jbg_urcJa831y_ju-Th6fZ-fPmQGClkn3ChIRUjUwqelSrLM1ZhXSsNQlagypxnElBhWhkucpOPkGe1TnWmgEEJsha75HjpnfnuY8DQF20TDFqrHXZDKJhSalEjEdGjf-ikG7yL0xUcmGScC8kidbKkFtsEj3URf6rVfl4wKBYBFeP88fknoKsIH66UQ9li9Yf-JiK-AdmjjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014122341</pqid></control><display><type>article</type><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</creator><creatorcontrib>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</creatorcontrib><description>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu Sn core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00200b</identifier><identifier>PMID: 29411848</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Barrier layers ; Copper ; Electrodes ; Inks ; Nanomaterials ; Nanoparticles ; Nickel ; Polyethylene terephthalate ; Substrates</subject><ispartof>Nanoscale, 2018-01, Vol.10 (11), p.5047-5053</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</citedby><cites>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</cites><orcidid>0000-0002-3286-1628 ; 0000-0002-5969-1614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hye Jin</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Young Woo, Jeong</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Su Yeon</creatorcontrib><creatorcontrib>Choi, Youngmin</creatorcontrib><creatorcontrib>Jeong, Sunho</creatorcontrib><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu Sn core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</description><subject>Barrier layers</subject><subject>Copper</subject><subject>Electrodes</subject><subject>Inks</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Polyethylene terephthalate</subject><subject>Substrates</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkdtKxDAQhoMonm98AAl4I2J1cti28U4XTyAKotclTafa3TRdkxbcR_CtzbqrF14MmcDHl5n8hBwwOGMg1LnJnQfgAOUa2eYgIREi4-t_fSq3yE4IE4BUiVRski2uJGO5zLfJ113z9m7ntBq8Li3S8ZCUOmBF0aLpfVdhoLXvWqrpzDeu_4Gcdt1M-74x8dI2n_3gkTZuekFrq8N7YqOzT0LE0WN1SqeNwwhra-eJ6VzUWhufaBvju9D7wSwEe2Sj1jbg_urcJa831y_ju-Th6fZ-fPmQGClkn3ChIRUjUwqelSrLM1ZhXSsNQlagypxnElBhWhkucpOPkGe1TnWmgEEJsha75HjpnfnuY8DQF20TDFqrHXZDKJhSalEjEdGjf-ikG7yL0xUcmGScC8kidbKkFtsEj3URf6rVfl4wKBYBFeP88fknoKsIH66UQ9li9Yf-JiK-AdmjjVg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Park, Hye Jin</creator><creator>Jo, Yejin</creator><creator>Cho, Min Kyung</creator><creator>Young Woo, Jeong</creator><creator>Kim, Dojin</creator><creator>Lee, Su Yeon</creator><creator>Choi, Youngmin</creator><creator>Jeong, Sunho</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3286-1628</orcidid><orcidid>https://orcid.org/0000-0002-5969-1614</orcidid></search><sort><creationdate>20180101</creationdate><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><author>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Barrier layers</topic><topic>Copper</topic><topic>Electrodes</topic><topic>Inks</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Polyethylene terephthalate</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hye Jin</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Young Woo, Jeong</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Su Yeon</creatorcontrib><creatorcontrib>Choi, Youngmin</creatorcontrib><creatorcontrib>Jeong, Sunho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hye Jin</au><au>Jo, Yejin</au><au>Cho, Min Kyung</au><au>Young Woo, Jeong</au><au>Kim, Dojin</au><au>Lee, Su Yeon</au><au>Choi, Youngmin</au><au>Jeong, Sunho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>5047</spage><epage>5053</epage><pages>5047-5053</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu Sn core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29411848</pmid><doi>10.1039/c8nr00200b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3286-1628</orcidid><orcidid>https://orcid.org/0000-0002-5969-1614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-01, Vol.10 (11), p.5047-5053
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1999199953
source Royal Society Of Chemistry Journals 2008-
subjects Barrier layers
Copper
Electrodes
Inks
Nanomaterials
Nanoparticles
Nickel
Polyethylene terephthalate
Substrates
title Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20durable%20Cu-based%20electrodes%20from%20a%20printable%20nanoparticle%20mixture%20ink:%20flash-light-sintered,%20kinetically-controlled%20microstructure&rft.jtitle=Nanoscale&rft.au=Park,%20Hye%20Jin&rft.date=2018-01-01&rft.volume=10&rft.issue=11&rft.spage=5047&rft.epage=5053&rft.pages=5047-5053&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00200b&rft_dat=%3Cproquest_cross%3E2014122341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014122341&rft_id=info:pmid/29411848&rfr_iscdi=true