Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure
Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printab...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-01, Vol.10 (11), p.5047-5053 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5053 |
---|---|
container_issue | 11 |
container_start_page | 5047 |
container_title | Nanoscale |
container_volume | 10 |
creator | Park, Hye Jin Jo, Yejin Cho, Min Kyung Young Woo, Jeong Kim, Dojin Lee, Su Yeon Choi, Youngmin Jeong, Sunho |
description | Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu
Sn
core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer. |
doi_str_mv | 10.1039/c8nr00200b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1999199953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014122341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMonm98AAl4I2J1cti28U4XTyAKotclTafa3TRdkxbcR_CtzbqrF14MmcDHl5n8hBwwOGMg1LnJnQfgAOUa2eYgIREi4-t_fSq3yE4IE4BUiVRski2uJGO5zLfJ113z9m7ntBq8Li3S8ZCUOmBF0aLpfVdhoLXvWqrpzDeu_4Gcdt1M-74x8dI2n_3gkTZuekFrq8N7YqOzT0LE0WN1SqeNwwhra-eJ6VzUWhufaBvju9D7wSwEe2Sj1jbg_urcJa831y_ju-Th6fZ-fPmQGClkn3ChIRUjUwqelSrLM1ZhXSsNQlagypxnElBhWhkucpOPkGe1TnWmgEEJsha75HjpnfnuY8DQF20TDFqrHXZDKJhSalEjEdGjf-ikG7yL0xUcmGScC8kidbKkFtsEj3URf6rVfl4wKBYBFeP88fknoKsIH66UQ9li9Yf-JiK-AdmjjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014122341</pqid></control><display><type>article</type><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</creator><creatorcontrib>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</creatorcontrib><description>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu
Sn
core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00200b</identifier><identifier>PMID: 29411848</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Barrier layers ; Copper ; Electrodes ; Inks ; Nanomaterials ; Nanoparticles ; Nickel ; Polyethylene terephthalate ; Substrates</subject><ispartof>Nanoscale, 2018-01, Vol.10 (11), p.5047-5053</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</citedby><cites>FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</cites><orcidid>0000-0002-3286-1628 ; 0000-0002-5969-1614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29411848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hye Jin</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Young Woo, Jeong</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Su Yeon</creatorcontrib><creatorcontrib>Choi, Youngmin</creatorcontrib><creatorcontrib>Jeong, Sunho</creatorcontrib><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu
Sn
core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</description><subject>Barrier layers</subject><subject>Copper</subject><subject>Electrodes</subject><subject>Inks</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Polyethylene terephthalate</subject><subject>Substrates</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkdtKxDAQhoMonm98AAl4I2J1cti28U4XTyAKotclTafa3TRdkxbcR_CtzbqrF14MmcDHl5n8hBwwOGMg1LnJnQfgAOUa2eYgIREi4-t_fSq3yE4IE4BUiVRski2uJGO5zLfJ113z9m7ntBq8Li3S8ZCUOmBF0aLpfVdhoLXvWqrpzDeu_4Gcdt1M-74x8dI2n_3gkTZuekFrq8N7YqOzT0LE0WN1SqeNwwhra-eJ6VzUWhufaBvju9D7wSwEe2Sj1jbg_urcJa831y_ju-Th6fZ-fPmQGClkn3ChIRUjUwqelSrLM1ZhXSsNQlagypxnElBhWhkucpOPkGe1TnWmgEEJsha75HjpnfnuY8DQF20TDFqrHXZDKJhSalEjEdGjf-ikG7yL0xUcmGScC8kidbKkFtsEj3URf6rVfl4wKBYBFeP88fknoKsIH66UQ9li9Yf-JiK-AdmjjVg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Park, Hye Jin</creator><creator>Jo, Yejin</creator><creator>Cho, Min Kyung</creator><creator>Young Woo, Jeong</creator><creator>Kim, Dojin</creator><creator>Lee, Su Yeon</creator><creator>Choi, Youngmin</creator><creator>Jeong, Sunho</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3286-1628</orcidid><orcidid>https://orcid.org/0000-0002-5969-1614</orcidid></search><sort><creationdate>20180101</creationdate><title>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</title><author>Park, Hye Jin ; Jo, Yejin ; Cho, Min Kyung ; Young Woo, Jeong ; Kim, Dojin ; Lee, Su Yeon ; Choi, Youngmin ; Jeong, Sunho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-23a0635cb327b97871deff9a034d09b82740e9e6dc238c85e27fa6a79010b04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Barrier layers</topic><topic>Copper</topic><topic>Electrodes</topic><topic>Inks</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Polyethylene terephthalate</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hye Jin</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Young Woo, Jeong</creatorcontrib><creatorcontrib>Kim, Dojin</creatorcontrib><creatorcontrib>Lee, Su Yeon</creatorcontrib><creatorcontrib>Choi, Youngmin</creatorcontrib><creatorcontrib>Jeong, Sunho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hye Jin</au><au>Jo, Yejin</au><au>Cho, Min Kyung</au><au>Young Woo, Jeong</au><au>Kim, Dojin</au><au>Lee, Su Yeon</au><au>Choi, Youngmin</au><au>Jeong, Sunho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>5047</spage><epage>5053</epage><pages>5047-5053</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/Cu
Sn
core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29411848</pmid><doi>10.1039/c8nr00200b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3286-1628</orcidid><orcidid>https://orcid.org/0000-0002-5969-1614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-01, Vol.10 (11), p.5047-5053 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1999199953 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Barrier layers Copper Electrodes Inks Nanomaterials Nanoparticles Nickel Polyethylene terephthalate Substrates |
title | Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20durable%20Cu-based%20electrodes%20from%20a%20printable%20nanoparticle%20mixture%20ink:%20flash-light-sintered,%20kinetically-controlled%20microstructure&rft.jtitle=Nanoscale&rft.au=Park,%20Hye%20Jin&rft.date=2018-01-01&rft.volume=10&rft.issue=11&rft.spage=5047&rft.epage=5053&rft.pages=5047-5053&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00200b&rft_dat=%3Cproquest_cross%3E2014122341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014122341&rft_id=info:pmid/29411848&rfr_iscdi=true |