High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation

Because of sluggish kinetics of the oxygen evolution reaction (OER), designing low-cost, highly active, and stable electrocatalysts for OER is important for the development of sustainable electrochemical water splitting. Here, {112} high-index facet exposed porous Co3O4 nanosheets with oxygen vacanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-02, Vol.10 (8), p.7079-7086
Hauptverfasser: Wei, Renjie, Fang, Ming, Dong, Guofa, Lan, Changyong, Shu, Lei, Zhang, Heng, Bu, Xiuming, Ho, Johnny C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7086
container_issue 8
container_start_page 7079
container_title ACS applied materials & interfaces
container_volume 10
creator Wei, Renjie
Fang, Ming
Dong, Guofa
Lan, Changyong
Shu, Lei
Zhang, Heng
Bu, Xiuming
Ho, Johnny C
description Because of sluggish kinetics of the oxygen evolution reaction (OER), designing low-cost, highly active, and stable electrocatalysts for OER is important for the development of sustainable electrochemical water splitting. Here, {112} high-index facet exposed porous Co3O4 nanosheets with oxygen vacancies on the surface have been successfully synthesized via a simple hydrothermal method followed by NaBH4 reduction. As compared with the pristine and other faceted porous Co3O4 nanosheets (e.g., {110} and {111}), the as-prepared {112} faceted porous nanosheets exhibit a much lower overpotential of 318 mV at a current density of 10 mA cm–2. Importantly, these nanosheets also give excellent electrochemical stability, displaying an insignificant change in the required overpotential at a current density of 10 mA cm–2 even after a 14 h long-term chronoamperometric test. All these superior OER activity and stability could be attributed to their unique hierarchical structures assembled by ultrathin porous nanosheets, {112} high-index exposed facets with higher ratio of Co2+/Co3+ and oxygen vacancies on the surface, which can substantially enhance the charge transfer rate and increase the number of active sites. All these findings not only demonstrate the potency of our Co3O4 nanosheets for efficient water oxidation but also provide further insights into developing cost-effective and high-performance catalysts for electrochemical applications.
doi_str_mv 10.1021/acsami.7b18208
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1999192119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999192119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-b17620489a72fab23d54e335e5c3fe8f51e77cb0379da9ad6aa63616a681bb3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavnvcoQup-JJvsUUprC8UKih6XSTJpt6S7mt1i--9NafE0L8PDy8xDyD1nI84Ef4IqwNaO8pIXghUXZMB1miaFyMTlf07Ta3ITwoYxJQXLBgRndrVO5q7GPZ1ChRFr-uY7vwt07OUypa_gfFgjxkB_bVzT5f6wQkc_oQJXWQy08R09lrQHOmka2-9cpF8QsetZW0O03t2SqwbagHfnOSTv08nHeJYsli_z8fMiASFkTEqeK8HSQkMuGiiFrLMUpcwwq2SDRZNxzPOqZDLXNWioFYCSiitQBS9LOSQPp9bvzv_sMESztaHCtgWH_UOGa625FpzrHn08ob00s_G7zvVnGc7M0aQ5mTRnk_IP7fdn8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999192119</pqid></control><display><type>article</type><title>High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation</title><source>American Chemical Society Journals</source><creator>Wei, Renjie ; Fang, Ming ; Dong, Guofa ; Lan, Changyong ; Shu, Lei ; Zhang, Heng ; Bu, Xiuming ; Ho, Johnny C</creator><creatorcontrib>Wei, Renjie ; Fang, Ming ; Dong, Guofa ; Lan, Changyong ; Shu, Lei ; Zhang, Heng ; Bu, Xiuming ; Ho, Johnny C</creatorcontrib><description>Because of sluggish kinetics of the oxygen evolution reaction (OER), designing low-cost, highly active, and stable electrocatalysts for OER is important for the development of sustainable electrochemical water splitting. Here, {112} high-index facet exposed porous Co3O4 nanosheets with oxygen vacancies on the surface have been successfully synthesized via a simple hydrothermal method followed by NaBH4 reduction. As compared with the pristine and other faceted porous Co3O4 nanosheets (e.g., {110} and {111}), the as-prepared {112} faceted porous nanosheets exhibit a much lower overpotential of 318 mV at a current density of 10 mA cm–2. Importantly, these nanosheets also give excellent electrochemical stability, displaying an insignificant change in the required overpotential at a current density of 10 mA cm–2 even after a 14 h long-term chronoamperometric test. All these superior OER activity and stability could be attributed to their unique hierarchical structures assembled by ultrathin porous nanosheets, {112} high-index exposed facets with higher ratio of Co2+/Co3+ and oxygen vacancies on the surface, which can substantially enhance the charge transfer rate and increase the number of active sites. All these findings not only demonstrate the potency of our Co3O4 nanosheets for efficient water oxidation but also provide further insights into developing cost-effective and high-performance catalysts for electrochemical applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b18208</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-02, Vol.10 (8), p.7079-7086</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3000-8794 ; 0000-0002-0459-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b18208$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b18208$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wei, Renjie</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Dong, Guofa</creatorcontrib><creatorcontrib>Lan, Changyong</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><title>High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Because of sluggish kinetics of the oxygen evolution reaction (OER), designing low-cost, highly active, and stable electrocatalysts for OER is important for the development of sustainable electrochemical water splitting. Here, {112} high-index facet exposed porous Co3O4 nanosheets with oxygen vacancies on the surface have been successfully synthesized via a simple hydrothermal method followed by NaBH4 reduction. As compared with the pristine and other faceted porous Co3O4 nanosheets (e.g., {110} and {111}), the as-prepared {112} faceted porous nanosheets exhibit a much lower overpotential of 318 mV at a current density of 10 mA cm–2. Importantly, these nanosheets also give excellent electrochemical stability, displaying an insignificant change in the required overpotential at a current density of 10 mA cm–2 even after a 14 h long-term chronoamperometric test. All these superior OER activity and stability could be attributed to their unique hierarchical structures assembled by ultrathin porous nanosheets, {112} high-index exposed facets with higher ratio of Co2+/Co3+ and oxygen vacancies on the surface, which can substantially enhance the charge transfer rate and increase the number of active sites. All these findings not only demonstrate the potency of our Co3O4 nanosheets for efficient water oxidation but also provide further insights into developing cost-effective and high-performance catalysts for electrochemical applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavnvcoQup-JJvsUUprC8UKih6XSTJpt6S7mt1i--9NafE0L8PDy8xDyD1nI84Ef4IqwNaO8pIXghUXZMB1miaFyMTlf07Ta3ITwoYxJQXLBgRndrVO5q7GPZ1ChRFr-uY7vwt07OUypa_gfFgjxkB_bVzT5f6wQkc_oQJXWQy08R09lrQHOmka2-9cpF8QsetZW0O03t2SqwbagHfnOSTv08nHeJYsli_z8fMiASFkTEqeK8HSQkMuGiiFrLMUpcwwq2SDRZNxzPOqZDLXNWioFYCSiitQBS9LOSQPp9bvzv_sMESztaHCtgWH_UOGa625FpzrHn08ob00s_G7zvVnGc7M0aQ5mTRnk_IP7fdn8Q</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Wei, Renjie</creator><creator>Fang, Ming</creator><creator>Dong, Guofa</creator><creator>Lan, Changyong</creator><creator>Shu, Lei</creator><creator>Zhang, Heng</creator><creator>Bu, Xiuming</creator><creator>Ho, Johnny C</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid><orcidid>https://orcid.org/0000-0002-0459-7196</orcidid></search><sort><creationdate>20180228</creationdate><title>High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation</title><author>Wei, Renjie ; Fang, Ming ; Dong, Guofa ; Lan, Changyong ; Shu, Lei ; Zhang, Heng ; Bu, Xiuming ; Ho, Johnny C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-b17620489a72fab23d54e335e5c3fe8f51e77cb0379da9ad6aa63616a681bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Renjie</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Dong, Guofa</creatorcontrib><creatorcontrib>Lan, Changyong</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Bu, Xiuming</creatorcontrib><creatorcontrib>Ho, Johnny C</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Renjie</au><au>Fang, Ming</au><au>Dong, Guofa</au><au>Lan, Changyong</au><au>Shu, Lei</au><au>Zhang, Heng</au><au>Bu, Xiuming</au><au>Ho, Johnny C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>10</volume><issue>8</issue><spage>7079</spage><epage>7086</epage><pages>7079-7086</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Because of sluggish kinetics of the oxygen evolution reaction (OER), designing low-cost, highly active, and stable electrocatalysts for OER is important for the development of sustainable electrochemical water splitting. Here, {112} high-index facet exposed porous Co3O4 nanosheets with oxygen vacancies on the surface have been successfully synthesized via a simple hydrothermal method followed by NaBH4 reduction. As compared with the pristine and other faceted porous Co3O4 nanosheets (e.g., {110} and {111}), the as-prepared {112} faceted porous nanosheets exhibit a much lower overpotential of 318 mV at a current density of 10 mA cm–2. Importantly, these nanosheets also give excellent electrochemical stability, displaying an insignificant change in the required overpotential at a current density of 10 mA cm–2 even after a 14 h long-term chronoamperometric test. All these superior OER activity and stability could be attributed to their unique hierarchical structures assembled by ultrathin porous nanosheets, {112} high-index exposed facets with higher ratio of Co2+/Co3+ and oxygen vacancies on the surface, which can substantially enhance the charge transfer rate and increase the number of active sites. All these findings not only demonstrate the potency of our Co3O4 nanosheets for efficient water oxidation but also provide further insights into developing cost-effective and high-performance catalysts for electrochemical applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.7b18208</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3000-8794</orcidid><orcidid>https://orcid.org/0000-0002-0459-7196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-02, Vol.10 (8), p.7079-7086
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1999192119
source American Chemical Society Journals
title High-Index Faceted Porous Co3O4 Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Index%20Faceted%20Porous%20Co3O4%20Nanosheets%20with%20Oxygen%20Vacancies%20for%20Highly%20Efficient%20Water%20Oxidation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wei,%20Renjie&rft.date=2018-02-28&rft.volume=10&rft.issue=8&rft.spage=7079&rft.epage=7086&rft.pages=7079-7086&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b18208&rft_dat=%3Cproquest_acs_j%3E1999192119%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999192119&rft_id=info:pmid/&rfr_iscdi=true