Environmental assessment of supercritical water oxidation of sewage sludge

Environmental aspects of using supercritical water oxidation (SCWO) to treat sewage sludge were studied using a life cycle assessment (LCA) methodology. The system studied is the first commercial scale SCWO plant for sewage sludge in the world, treating sludge from the municipal wastewater treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resources, conservation and recycling conservation and recycling, 2004-07, Vol.41 (4), p.321-338
Hauptverfasser: Svanström, Magdalena, Fröling, Morgan, Modell, Michael, Peters, William A, Tester, Jefferson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Environmental aspects of using supercritical water oxidation (SCWO) to treat sewage sludge were studied using a life cycle assessment (LCA) methodology. The system studied is the first commercial scale SCWO plant for sewage sludge in the world, treating sludge from the municipal wastewater treatment facility in Harlingen, TX, USA. The environmental impacts were evaluated using three specific environmental attributes: global warming potential (GWP), photo-oxidant creation potential (POCP) and resource depletion; as well as two single point indicators: EPS2000 and EcoIndicator99. The LCA results show that for the described process, gas-fired preheating of the sludge is the major contributor to environmental impacts, and emissions from generating electricity for pumping and for oxygen production are also important. Overall, SCWO processing of undigested sewage sludge is an environmentally attractive technology, particularly when heat is recovered from the process. Energy-conserving measures and recovery of excess oxygen from the SCWO process should be considered for improving the sustainability potential.
ISSN:0921-3449
1879-0658
DOI:10.1016/j.resconrec.2003.12.002