Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles

Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-04, Vol.18 (4), p.2189-2194
Hauptverfasser: Yu, Sungju, Wilson, Andrew J, Heo, Jaeyoung, Jain, Prashant K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2194
container_issue 4
container_start_page 2189
container_title Nano letters
container_volume 18
creator Yu, Sungju
Wilson, Andrew J
Heo, Jaeyoung
Jain, Prashant K
description Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO2 reduction. However, the multistep nature of CO2-to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO2 to yield C1 (methane) and C2 (ethane) hydrocarbons. The light-excitation attributes influence the C2 and C1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C–C coupling required for C2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.
doi_str_mv 10.1021/acs.nanolett.7b05410
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1995157435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1995157435</sourcerecordid><originalsourceid>FETCH-LOGICAL-a332t-393dbcaf800f42392979a70e35a4f54a5136c9f89d7400ea2b9a7e9d5497101a3</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtv4CJLN1NvJkmnWZax_kD9QarbIZPJ1JQ0qZOM4M538A19ElNahQv3cu7hcPgQOicwIpCTS6nCyEnnrY5xVNTAGYEDNCCcQjYWIj_8vyfsGJ2EsAIAQTkM0OeTlWHtnVG49C523mLf4vveRpPNrFZJcXjRSRda3WHpGlz-fH2XydxvrHFLbBx-NcHUVmdzs3yL2VVnPrTD5WOOn3XTq2hSQpppjx9Sx43solFWh1N01Eob9Nl-D9HL9WxR3mbzx5u7cjrPJKV5zKigTa1kOwFoWU5FLgohC9CUS9ZyJjmhYyXaiWgKBqBlXqe3Fg1noiBAJB2ii13upvPvvQ6xWpugtLXSad-HigjBCS8Y5ckKO2sCWq1837lUrCJQbSlXW_GPcrWnTH8BPM50wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995157435</pqid></control><display><type>article</type><title>Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles</title><source>ACS Publications</source><creator>Yu, Sungju ; Wilson, Andrew J ; Heo, Jaeyoung ; Jain, Prashant K</creator><creatorcontrib>Yu, Sungju ; Wilson, Andrew J ; Heo, Jaeyoung ; Jain, Prashant K</creatorcontrib><description>Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO2 reduction. However, the multistep nature of CO2-to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO2 to yield C1 (methane) and C2 (ethane) hydrocarbons. The light-excitation attributes influence the C2 and C1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C–C coupling required for C2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b05410</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2018-04, Vol.18 (4), p.2189-2194</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7306-3972 ; 0000-0003-3427-810X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b05410$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b05410$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yu, Sungju</creatorcontrib><creatorcontrib>Wilson, Andrew J</creatorcontrib><creatorcontrib>Heo, Jaeyoung</creatorcontrib><creatorcontrib>Jain, Prashant K</creatorcontrib><title>Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO2 reduction. However, the multistep nature of CO2-to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO2 to yield C1 (methane) and C2 (ethane) hydrocarbons. The light-excitation attributes influence the C2 and C1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C–C coupling required for C2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtv4CJLN1NvJkmnWZax_kD9QarbIZPJ1JQ0qZOM4M538A19ElNahQv3cu7hcPgQOicwIpCTS6nCyEnnrY5xVNTAGYEDNCCcQjYWIj_8vyfsGJ2EsAIAQTkM0OeTlWHtnVG49C523mLf4vveRpPNrFZJcXjRSRda3WHpGlz-fH2XydxvrHFLbBx-NcHUVmdzs3yL2VVnPrTD5WOOn3XTq2hSQpppjx9Sx43solFWh1N01Eob9Nl-D9HL9WxR3mbzx5u7cjrPJKV5zKigTa1kOwFoWU5FLgohC9CUS9ZyJjmhYyXaiWgKBqBlXqe3Fg1noiBAJB2ii13upvPvvQ6xWpugtLXSad-HigjBCS8Y5ckKO2sCWq1837lUrCJQbSlXW_GPcrWnTH8BPM50wA</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Yu, Sungju</creator><creator>Wilson, Andrew J</creator><creator>Heo, Jaeyoung</creator><creator>Jain, Prashant K</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7306-3972</orcidid><orcidid>https://orcid.org/0000-0003-3427-810X</orcidid></search><sort><creationdate>20180411</creationdate><title>Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles</title><author>Yu, Sungju ; Wilson, Andrew J ; Heo, Jaeyoung ; Jain, Prashant K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a332t-393dbcaf800f42392979a70e35a4f54a5136c9f89d7400ea2b9a7e9d5497101a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Sungju</creatorcontrib><creatorcontrib>Wilson, Andrew J</creatorcontrib><creatorcontrib>Heo, Jaeyoung</creatorcontrib><creatorcontrib>Jain, Prashant K</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Sungju</au><au>Wilson, Andrew J</au><au>Heo, Jaeyoung</au><au>Jain, Prashant K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>2189</spage><epage>2194</epage><pages>2189-2194</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO2 reduction. However, the multistep nature of CO2-to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO2 to yield C1 (methane) and C2 (ethane) hydrocarbons. The light-excitation attributes influence the C2 and C1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C–C coupling required for C2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.7b05410</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7306-3972</orcidid><orcidid>https://orcid.org/0000-0003-3427-810X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-04, Vol.18 (4), p.2189-2194
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1995157435
source ACS Publications
title Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Control%20of%20Multi-Electron%20Transfer%20and%20C%E2%80%93C%20Coupling%20in%20Visible-Light-Driven%20CO2%20Reduction%20on%20Au%20Nanoparticles&rft.jtitle=Nano%20letters&rft.au=Yu,%20Sungju&rft.date=2018-04-11&rft.volume=18&rft.issue=4&rft.spage=2189&rft.epage=2194&rft.pages=2189-2194&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b05410&rft_dat=%3Cproquest_acs_j%3E1995157435%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995157435&rft_id=info:pmid/&rfr_iscdi=true