A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring

Toward ultra‐simple and field‐ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-04, Vol.24 (23), p.6025-6029
Hauptverfasser: Klug, Katherine E., Reynolds, Kelly A., Yoon, Jeong‐Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6029
container_issue 23
container_start_page 6025
container_title Chemistry : a European journal
container_volume 24
creator Klug, Katherine E.
Reynolds, Kelly A.
Yoon, Jeong‐Yeol
description Toward ultra‐simple and field‐ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper‐based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. A novel assay transducer mechanism is demonstrated based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Pathogens are quantified as a function of flow rate through a paper microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation.
doi_str_mv 10.1002/chem.201800085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1995151021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1995151021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-dedb2c5a07191c6d08f468df9150037daccd7c157f61a61da75c2243806a072f3</originalsourceid><addsrcrecordid>eNqFkL1OHDEURq2IKCyQNiWyRJNmNteesT0uybL8SKBEAmrL2B4wmrE39mzQdnmEPCNPglfLj0RD5eZ8R9cHoW8EpgSA_jB3bphSIC0AtOwTmhBGSVULzrbQBGQjKs5quY12cr4viOR1_QVtU9kAaxifIHWIZ3rh-16nFT7u4wM-WgU9eJMf__3_qbOz-NKF7MMtvohW935c4S4mfOSTMyOeh78-xTC4MOoe_9bjXbx1oaDBjzGV1R763Ok-u6_P7y66Pp5fzU6r818nZ7PD88o0DFhlnb2hhmkQRBLDLbRdw1vbScIAamG1MVYYwkTHiebEasEMpU3dAi8b2tW76PvGu0jxz9LlUQ0-G1f-FVxcZkWkZIQRoKSgB-_Q-7hMoVynKFDBWtE2a2q6oUyKOSfXqUXyQ6mkCKh1erVOr17Tl8H-s3Z5Mzj7ir-0LoDcAA--d6sPdGp2Or94kz8BcDKQUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027587841</pqid></control><display><type>article</type><title>A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Klug, Katherine E. ; Reynolds, Kelly A. ; Yoon, Jeong‐Yeol</creator><creatorcontrib>Klug, Katherine E. ; Reynolds, Kelly A. ; Yoon, Jeong‐Yeol</creatorcontrib><description>Toward ultra‐simple and field‐ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper‐based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. A novel assay transducer mechanism is demonstrated based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Pathogens are quantified as a function of flow rate through a paper microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201800085</identifier><identifier>PMID: 29405456</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aggregation ; Assaying ; Biosensing Techniques - methods ; Biosensors ; capillary ; Capillary flow ; Chemistry ; E coli ; Environmental monitoring ; Escherichia coli - isolation &amp; purification ; Flow velocity ; Microfluidic Analytical Techniques ; microfluidic device ; Pathogens ; Rheological properties ; RNA, Viral ; Serum - virology ; Vector-borne diseases ; Viruses ; Water analysis ; Water sampling ; Zika Virus - genetics</subject><ispartof>Chemistry : a European journal, 2018-04, Vol.24 (23), p.6025-6029</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-dedb2c5a07191c6d08f468df9150037daccd7c157f61a61da75c2243806a072f3</citedby><cites>FETCH-LOGICAL-c4505-dedb2c5a07191c6d08f468df9150037daccd7c157f61a61da75c2243806a072f3</cites><orcidid>0000-0002-1728-4623 ; 0000-0002-9720-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201800085$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201800085$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29405456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klug, Katherine E.</creatorcontrib><creatorcontrib>Reynolds, Kelly A.</creatorcontrib><creatorcontrib>Yoon, Jeong‐Yeol</creatorcontrib><title>A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Toward ultra‐simple and field‐ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper‐based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. A novel assay transducer mechanism is demonstrated based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Pathogens are quantified as a function of flow rate through a paper microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation.</description><subject>aggregation</subject><subject>Assaying</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>capillary</subject><subject>Capillary flow</subject><subject>Chemistry</subject><subject>E coli</subject><subject>Environmental monitoring</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Flow velocity</subject><subject>Microfluidic Analytical Techniques</subject><subject>microfluidic device</subject><subject>Pathogens</subject><subject>Rheological properties</subject><subject>RNA, Viral</subject><subject>Serum - virology</subject><subject>Vector-borne diseases</subject><subject>Viruses</subject><subject>Water analysis</subject><subject>Water sampling</subject><subject>Zika Virus - genetics</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1OHDEURq2IKCyQNiWyRJNmNteesT0uybL8SKBEAmrL2B4wmrE39mzQdnmEPCNPglfLj0RD5eZ8R9cHoW8EpgSA_jB3bphSIC0AtOwTmhBGSVULzrbQBGQjKs5quY12cr4viOR1_QVtU9kAaxifIHWIZ3rh-16nFT7u4wM-WgU9eJMf__3_qbOz-NKF7MMtvohW935c4S4mfOSTMyOeh78-xTC4MOoe_9bjXbx1oaDBjzGV1R763Ok-u6_P7y66Pp5fzU6r818nZ7PD88o0DFhlnb2hhmkQRBLDLbRdw1vbScIAamG1MVYYwkTHiebEasEMpU3dAi8b2tW76PvGu0jxz9LlUQ0-G1f-FVxcZkWkZIQRoKSgB-_Q-7hMoVynKFDBWtE2a2q6oUyKOSfXqUXyQ6mkCKh1erVOr17Tl8H-s3Z5Mzj7ir-0LoDcAA--d6sPdGp2Or94kz8BcDKQUw</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Klug, Katherine E.</creator><creator>Reynolds, Kelly A.</creator><creator>Yoon, Jeong‐Yeol</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1728-4623</orcidid><orcidid>https://orcid.org/0000-0002-9720-6472</orcidid></search><sort><creationdate>20180420</creationdate><title>A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring</title><author>Klug, Katherine E. ; Reynolds, Kelly A. ; Yoon, Jeong‐Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-dedb2c5a07191c6d08f468df9150037daccd7c157f61a61da75c2243806a072f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aggregation</topic><topic>Assaying</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>capillary</topic><topic>Capillary flow</topic><topic>Chemistry</topic><topic>E coli</topic><topic>Environmental monitoring</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Flow velocity</topic><topic>Microfluidic Analytical Techniques</topic><topic>microfluidic device</topic><topic>Pathogens</topic><topic>Rheological properties</topic><topic>RNA, Viral</topic><topic>Serum - virology</topic><topic>Vector-borne diseases</topic><topic>Viruses</topic><topic>Water analysis</topic><topic>Water sampling</topic><topic>Zika Virus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klug, Katherine E.</creatorcontrib><creatorcontrib>Reynolds, Kelly A.</creatorcontrib><creatorcontrib>Yoon, Jeong‐Yeol</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klug, Katherine E.</au><au>Reynolds, Kelly A.</au><au>Yoon, Jeong‐Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>24</volume><issue>23</issue><spage>6025</spage><epage>6029</epage><pages>6025-6029</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Toward ultra‐simple and field‐ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper‐based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. A novel assay transducer mechanism is demonstrated based on interfacial property changes and capillary flow dynamics in antibody‐conjugated submicron particle suspensions. Pathogens are quantified as a function of flow rate through a paper microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target‐particle aggregation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29405456</pmid><doi>10.1002/chem.201800085</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1728-4623</orcidid><orcidid>https://orcid.org/0000-0002-9720-6472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-04, Vol.24 (23), p.6025-6029
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1995151021
source MEDLINE; Wiley Online Library
subjects aggregation
Assaying
Biosensing Techniques - methods
Biosensors
capillary
Capillary flow
Chemistry
E coli
Environmental monitoring
Escherichia coli - isolation & purification
Flow velocity
Microfluidic Analytical Techniques
microfluidic device
Pathogens
Rheological properties
RNA, Viral
Serum - virology
Vector-borne diseases
Viruses
Water analysis
Water sampling
Zika Virus - genetics
title A Capillary Flow Dynamics‐Based Sensing Modality for Direct Environmental Pathogen Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Capillary%20Flow%20Dynamics%E2%80%90Based%20Sensing%20Modality%20for%20Direct%20Environmental%20Pathogen%20Monitoring&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Klug,%20Katherine%20E.&rft.date=2018-04-20&rft.volume=24&rft.issue=23&rft.spage=6025&rft.epage=6029&rft.pages=6025-6029&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201800085&rft_dat=%3Cproquest_cross%3E1995151021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027587841&rft_id=info:pmid/29405456&rfr_iscdi=true