Conjugated Polymers for Flexible Energy Harvesting and Storage

Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-03, Vol.30 (13), p.e1704261-n/a
Hauptverfasser: Zhang, Zhitao, Liao, Meng, Lou, Huiqing, Hu, Yajie, Sun, Xuemei, Peng, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page e1704261
container_title Advanced materials (Weinheim)
container_volume 30
creator Zhang, Zhitao
Liao, Meng
Lou, Huiqing
Hu, Yajie
Sun, Xuemei
Peng, Huisheng
description Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.
doi_str_mv 10.1002/adma.201704261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1994363081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019742663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWh9blzLgxs3Um2SambsRSq0PUBTUdchM7pQp89Cko_bfG2mt4MbV3Zx7-DiMHXMYcgBxbmxjhgJ4ColQfIsN-EjwOAEcbbMBoBzFqJJsj-17PwcAVKB22Z5AiZghDNjFpGvn_cwsyEaPXb1syPmo7Fx0VdNnldcUTVtys2V0Y9w7-UXVziLT2uhp0Tkzo0O2U5ra09H6HrCXq-nz5Ca-e7i-nYzv4iJJMx6XHDCXKDilmKLJTcELkMLmSiUpFWRJiRKsVSlSpjIQYSqIUWkxlbLguTxgZyvvq-ve-rBDN5UvqK5NS13vNUdMpJKQ8YCe_kHnXe_asE6HTpiGTkoGariiCtd576jUr65qjFtqDvq7rP4uqzdlw8PJWtvnDdkN_pMyALgCPqqalv_o9Pjyfvwr_wLa8YMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742663</pqid></control><display><type>article</type><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</creator><creatorcontrib>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</creatorcontrib><description>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704261</identifier><identifier>PMID: 29399890</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical industry ; Chemical synthesis ; conjugated polymers ; Electroactivity ; Energy harvesting ; Energy storage ; flexible ; Lithium-ion batteries ; Materials science ; Photovoltaic cells ; polymer solar cells ; Polymers ; Solar cells ; supercapacitors ; Thermal energy ; Thermoelectric generators</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1704261-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</citedby><cites>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29399890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Lou, Huiqing</creatorcontrib><creatorcontrib>Hu, Yajie</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</description><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>conjugated polymers</subject><subject>Electroactivity</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>flexible</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Photovoltaic cells</subject><subject>polymer solar cells</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>supercapacitors</subject><subject>Thermal energy</subject><subject>Thermoelectric generators</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWh9blzLgxs3Um2SambsRSq0PUBTUdchM7pQp89Cko_bfG2mt4MbV3Zx7-DiMHXMYcgBxbmxjhgJ4ColQfIsN-EjwOAEcbbMBoBzFqJJsj-17PwcAVKB22Z5AiZghDNjFpGvn_cwsyEaPXb1syPmo7Fx0VdNnldcUTVtys2V0Y9w7-UXVziLT2uhp0Tkzo0O2U5ra09H6HrCXq-nz5Ca-e7i-nYzv4iJJMx6XHDCXKDilmKLJTcELkMLmSiUpFWRJiRKsVSlSpjIQYSqIUWkxlbLguTxgZyvvq-ve-rBDN5UvqK5NS13vNUdMpJKQ8YCe_kHnXe_asE6HTpiGTkoGariiCtd576jUr65qjFtqDvq7rP4uqzdlw8PJWtvnDdkN_pMyALgCPqqalv_o9Pjyfvwr_wLa8YMI</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Zhang, Zhitao</creator><creator>Liao, Meng</creator><creator>Lou, Huiqing</creator><creator>Hu, Yajie</creator><creator>Sun, Xuemei</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><author>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>conjugated polymers</topic><topic>Electroactivity</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>flexible</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Photovoltaic cells</topic><topic>polymer solar cells</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>supercapacitors</topic><topic>Thermal energy</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Lou, Huiqing</creatorcontrib><creatorcontrib>Hu, Yajie</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhitao</au><au>Liao, Meng</au><au>Lou, Huiqing</au><au>Hu, Yajie</au><au>Sun, Xuemei</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated Polymers for Flexible Energy Harvesting and Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>13</issue><spage>e1704261</spage><epage>n/a</epage><pages>e1704261-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29399890</pmid><doi>10.1002/adma.201704261</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1704261-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1994363081
source Wiley Online Library - AutoHoldings Journals
subjects Chemical industry
Chemical synthesis
conjugated polymers
Electroactivity
Energy harvesting
Energy storage
flexible
Lithium-ion batteries
Materials science
Photovoltaic cells
polymer solar cells
Polymers
Solar cells
supercapacitors
Thermal energy
Thermoelectric generators
title Conjugated Polymers for Flexible Energy Harvesting and Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20Polymers%20for%20Flexible%20Energy%20Harvesting%20and%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhitao&rft.date=2018-03&rft.volume=30&rft.issue=13&rft.spage=e1704261&rft.epage=n/a&rft.pages=e1704261-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704261&rft_dat=%3Cproquest_cross%3E2019742663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742663&rft_id=info:pmid/29399890&rfr_iscdi=true