Conjugated Polymers for Flexible Energy Harvesting and Storage
Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-03, Vol.30 (13), p.e1704261-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | e1704261 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Zhang, Zhitao Liao, Meng Lou, Huiqing Hu, Yajie Sun, Xuemei Peng, Huisheng |
description | Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers.
The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering. |
doi_str_mv | 10.1002/adma.201704261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1994363081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019742663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWh9blzLgxs3Um2SambsRSq0PUBTUdchM7pQp89Cko_bfG2mt4MbV3Zx7-DiMHXMYcgBxbmxjhgJ4ColQfIsN-EjwOAEcbbMBoBzFqJJsj-17PwcAVKB22Z5AiZghDNjFpGvn_cwsyEaPXb1syPmo7Fx0VdNnldcUTVtys2V0Y9w7-UXVziLT2uhp0Tkzo0O2U5ra09H6HrCXq-nz5Ca-e7i-nYzv4iJJMx6XHDCXKDilmKLJTcELkMLmSiUpFWRJiRKsVSlSpjIQYSqIUWkxlbLguTxgZyvvq-ve-rBDN5UvqK5NS13vNUdMpJKQ8YCe_kHnXe_asE6HTpiGTkoGariiCtd576jUr65qjFtqDvq7rP4uqzdlw8PJWtvnDdkN_pMyALgCPqqalv_o9Pjyfvwr_wLa8YMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019742663</pqid></control><display><type>article</type><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</creator><creatorcontrib>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</creatorcontrib><description>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers.
The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704261</identifier><identifier>PMID: 29399890</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical industry ; Chemical synthesis ; conjugated polymers ; Electroactivity ; Energy harvesting ; Energy storage ; flexible ; Lithium-ion batteries ; Materials science ; Photovoltaic cells ; polymer solar cells ; Polymers ; Solar cells ; supercapacitors ; Thermal energy ; Thermoelectric generators</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1704261-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</citedby><cites>FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29399890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Lou, Huiqing</creatorcontrib><creatorcontrib>Hu, Yajie</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers.
The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</description><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>conjugated polymers</subject><subject>Electroactivity</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>flexible</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Photovoltaic cells</subject><subject>polymer solar cells</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>supercapacitors</subject><subject>Thermal energy</subject><subject>Thermoelectric generators</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWh9blzLgxs3Um2SambsRSq0PUBTUdchM7pQp89Cko_bfG2mt4MbV3Zx7-DiMHXMYcgBxbmxjhgJ4ColQfIsN-EjwOAEcbbMBoBzFqJJsj-17PwcAVKB22Z5AiZghDNjFpGvn_cwsyEaPXb1syPmo7Fx0VdNnldcUTVtys2V0Y9w7-UXVziLT2uhp0Tkzo0O2U5ra09H6HrCXq-nz5Ca-e7i-nYzv4iJJMx6XHDCXKDilmKLJTcELkMLmSiUpFWRJiRKsVSlSpjIQYSqIUWkxlbLguTxgZyvvq-ve-rBDN5UvqK5NS13vNUdMpJKQ8YCe_kHnXe_asE6HTpiGTkoGariiCtd576jUr65qjFtqDvq7rP4uqzdlw8PJWtvnDdkN_pMyALgCPqqalv_o9Pjyfvwr_wLa8YMI</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Zhang, Zhitao</creator><creator>Liao, Meng</creator><creator>Lou, Huiqing</creator><creator>Hu, Yajie</creator><creator>Sun, Xuemei</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Conjugated Polymers for Flexible Energy Harvesting and Storage</title><author>Zhang, Zhitao ; Liao, Meng ; Lou, Huiqing ; Hu, Yajie ; Sun, Xuemei ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4781-f109b3921e7979abac1c032db6647ecede62f0dd679e86802000025fd9733c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>conjugated polymers</topic><topic>Electroactivity</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>flexible</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Photovoltaic cells</topic><topic>polymer solar cells</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>supercapacitors</topic><topic>Thermal energy</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liao, Meng</creatorcontrib><creatorcontrib>Lou, Huiqing</creatorcontrib><creatorcontrib>Hu, Yajie</creatorcontrib><creatorcontrib>Sun, Xuemei</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhitao</au><au>Liao, Meng</au><au>Lou, Huiqing</au><au>Hu, Yajie</au><au>Sun, Xuemei</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated Polymers for Flexible Energy Harvesting and Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>13</issue><spage>e1704261</spage><epage>n/a</epage><pages>e1704261-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium‐ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers.
The key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. Such flexible energy devices may open up a new direction in multidisciplinary fields across chemistry, physics, biology, and engineering.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29399890</pmid><doi>10.1002/adma.201704261</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-03, Vol.30 (13), p.e1704261-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1994363081 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Chemical industry Chemical synthesis conjugated polymers Electroactivity Energy harvesting Energy storage flexible Lithium-ion batteries Materials science Photovoltaic cells polymer solar cells Polymers Solar cells supercapacitors Thermal energy Thermoelectric generators |
title | Conjugated Polymers for Flexible Energy Harvesting and Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20Polymers%20for%20Flexible%20Energy%20Harvesting%20and%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhitao&rft.date=2018-03&rft.volume=30&rft.issue=13&rft.spage=e1704261&rft.epage=n/a&rft.pages=e1704261-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704261&rft_dat=%3Cproquest_cross%3E2019742663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019742663&rft_id=info:pmid/29399890&rfr_iscdi=true |