A review and numerical assessment of the random walk particle tracking method
We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection pr...
Gespeichert in:
Veröffentlicht in: | Journal of contaminant hydrology 2006-10, Vol.87 (3), p.277-305 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 3 |
container_start_page | 277 |
container_title | Journal of contaminant hydrology |
container_volume | 87 |
creator | Salamon, Peter Fernàndez-Garcia, Daniel Gómez-Hernández, J. Jaime |
description | We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection principle, and (iii) the generalized stochastic differential equations (GSDE). Analytical solutions of the spatial moments for a two-layer system are compared to model predictions using the different techniques and results demonstrate that the interpolation method reproduces correctly average velocity, but fails to reproduce macrodispersion at higher hydraulic conductivity contrasts between the two layers. On the contrary, the reflection principle and the GSDE approach underestimate average velocity, but reproduce macrodispersion better for high contrasts. The different behavior is based on an artificial shift of mass for increasing heterogeneities for the GSDE approach and the reflection principle, whereas the interpolation method suffers from the smoothing of the dispersion tensor. The behavior of these approaches was furthermore analyzed in two-dimensional heterogeneous hydraulic conductivity fields, which are characterized by different random function models. Solute transport was simulated correctly by all three approaches for the reference fields having Gaussian structures or non-Gaussian structures with an isotropic spatial correlation, even for a variance of the natural log of hydraulic conductivity of
σ
ln
K
2
=
4. However, for the non-Gaussian model with a strong anisotropic spatial correlation and a variance of
σ
ln
K
2
=
2 and higher, the interpolation method was the only technique modelling solute transport correctly. Furthermore, we discuss the general applicability of random walk particle tracking in comparison to the standard transport models and conclude that in advection-dominated problems using a high spatial discretization or requiring the performance of many model runs, RWPT represents a good alternative for modelling contaminant transport. |
doi_str_mv | 10.1016/j.jconhyd.2006.05.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19940932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772206000957</els_id><sourcerecordid>19940932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-ede7a620f8036c70d96f89420477bf57fc0dd890c49cc0d59869418161b0ccf93</originalsourceid><addsrcrecordid>eNqF0U1vFCEYwHFiNHatfgSVi95mfGBmeDmZpvEtqfGgPRMWHrpsZ4YVZtv020uzk_ToCQ6_B8gfQt4yaBkw8Wnf7l2adw--5QCihaEFGJ6RDVOyawSAfk421elGSs7PyKtS9gAgFaiX5IwJ1WnR8w35eUEz3kW8p3b2dD5OmKOzI7WlYCkTzgtNgS47pLmCNNF7O97Sg81LdCPSJVt3G-cbOuGyS_41eRHsWPDNup6T669f_lx-b65-fftxeXHV2KGTS4MepRUcgoJOOAlei6B0z6GXchsGGRx4rzS4Xru6HbQSumeKCbYF54LuzsnH07mHnP4esSxmisXhONoZ07EYpnUPuuMVDifociolYzCHHCebHwwD89jR7M3a0Tx2NDCY2rHOvVsvOG4n9E9Ta7gKPqzAltor1DoulienWK8lZ9W9P7lgk7E3uZrr3xxYV_9CdsBFFZ9PAmuw-hPZFBdxduhjRrcYn-J_HvsPz4ychA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19940932</pqid></control><display><type>article</type><title>A review and numerical assessment of the random walk particle tracking method</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Salamon, Peter ; Fernàndez-Garcia, Daniel ; Gómez-Hernández, J. Jaime</creator><creatorcontrib>Salamon, Peter ; Fernàndez-Garcia, Daniel ; Gómez-Hernández, J. Jaime</creatorcontrib><description>We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection principle, and (iii) the generalized stochastic differential equations (GSDE). Analytical solutions of the spatial moments for a two-layer system are compared to model predictions using the different techniques and results demonstrate that the interpolation method reproduces correctly average velocity, but fails to reproduce macrodispersion at higher hydraulic conductivity contrasts between the two layers. On the contrary, the reflection principle and the GSDE approach underestimate average velocity, but reproduce macrodispersion better for high contrasts. The different behavior is based on an artificial shift of mass for increasing heterogeneities for the GSDE approach and the reflection principle, whereas the interpolation method suffers from the smoothing of the dispersion tensor. The behavior of these approaches was furthermore analyzed in two-dimensional heterogeneous hydraulic conductivity fields, which are characterized by different random function models. Solute transport was simulated correctly by all three approaches for the reference fields having Gaussian structures or non-Gaussian structures with an isotropic spatial correlation, even for a variance of the natural log of hydraulic conductivity of
σ
ln
K
2
=
4. However, for the non-Gaussian model with a strong anisotropic spatial correlation and a variance of
σ
ln
K
2
=
2 and higher, the interpolation method was the only technique modelling solute transport correctly. Furthermore, we discuss the general applicability of random walk particle tracking in comparison to the standard transport models and conclude that in advection-dominated problems using a high spatial discretization or requiring the performance of many model runs, RWPT represents a good alternative for modelling contaminant transport.</description><identifier>ISSN: 0169-7722</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2006.05.005</identifier><identifier>PMID: 16839642</identifier><identifier>CODEN: JCOHE6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>aquifers ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; generalized stochastic differential equations ; groundwater contamination ; groundwater flow ; Heterogeneity ; hydraulic conductivity ; Hydrogeology ; Hydrology. Hydrogeology ; literature reviews ; Local mass conservation ; mathematical models ; mathematics and statistics ; Models, Chemical ; Numerical implementation ; pollutants ; Pollution, environment geology ; porous media ; Random walk ; random walk particle tracking method ; Solute transport ; solutes ; Stochastic Processes ; Water Movements ; Water Pollutants, Chemical - chemistry</subject><ispartof>Journal of contaminant hydrology, 2006-10, Vol.87 (3), p.277-305</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-ede7a620f8036c70d96f89420477bf57fc0dd890c49cc0d59869418161b0ccf93</citedby><cites>FETCH-LOGICAL-a537t-ede7a620f8036c70d96f89420477bf57fc0dd890c49cc0d59869418161b0ccf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconhyd.2006.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18149721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16839642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Fernàndez-Garcia, Daniel</creatorcontrib><creatorcontrib>Gómez-Hernández, J. Jaime</creatorcontrib><title>A review and numerical assessment of the random walk particle tracking method</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection principle, and (iii) the generalized stochastic differential equations (GSDE). Analytical solutions of the spatial moments for a two-layer system are compared to model predictions using the different techniques and results demonstrate that the interpolation method reproduces correctly average velocity, but fails to reproduce macrodispersion at higher hydraulic conductivity contrasts between the two layers. On the contrary, the reflection principle and the GSDE approach underestimate average velocity, but reproduce macrodispersion better for high contrasts. The different behavior is based on an artificial shift of mass for increasing heterogeneities for the GSDE approach and the reflection principle, whereas the interpolation method suffers from the smoothing of the dispersion tensor. The behavior of these approaches was furthermore analyzed in two-dimensional heterogeneous hydraulic conductivity fields, which are characterized by different random function models. Solute transport was simulated correctly by all three approaches for the reference fields having Gaussian structures or non-Gaussian structures with an isotropic spatial correlation, even for a variance of the natural log of hydraulic conductivity of
σ
ln
K
2
=
4. However, for the non-Gaussian model with a strong anisotropic spatial correlation and a variance of
σ
ln
K
2
=
2 and higher, the interpolation method was the only technique modelling solute transport correctly. Furthermore, we discuss the general applicability of random walk particle tracking in comparison to the standard transport models and conclude that in advection-dominated problems using a high spatial discretization or requiring the performance of many model runs, RWPT represents a good alternative for modelling contaminant transport.</description><subject>aquifers</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>generalized stochastic differential equations</subject><subject>groundwater contamination</subject><subject>groundwater flow</subject><subject>Heterogeneity</subject><subject>hydraulic conductivity</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>literature reviews</subject><subject>Local mass conservation</subject><subject>mathematical models</subject><subject>mathematics and statistics</subject><subject>Models, Chemical</subject><subject>Numerical implementation</subject><subject>pollutants</subject><subject>Pollution, environment geology</subject><subject>porous media</subject><subject>Random walk</subject><subject>random walk particle tracking method</subject><subject>Solute transport</subject><subject>solutes</subject><subject>Stochastic Processes</subject><subject>Water Movements</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0169-7722</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vFCEYwHFiNHatfgSVi95mfGBmeDmZpvEtqfGgPRMWHrpsZ4YVZtv020uzk_ToCQ6_B8gfQt4yaBkw8Wnf7l2adw--5QCihaEFGJ6RDVOyawSAfk421elGSs7PyKtS9gAgFaiX5IwJ1WnR8w35eUEz3kW8p3b2dD5OmKOzI7WlYCkTzgtNgS47pLmCNNF7O97Sg81LdCPSJVt3G-cbOuGyS_41eRHsWPDNup6T669f_lx-b65-fftxeXHV2KGTS4MepRUcgoJOOAlei6B0z6GXchsGGRx4rzS4Xru6HbQSumeKCbYF54LuzsnH07mHnP4esSxmisXhONoZ07EYpnUPuuMVDifociolYzCHHCebHwwD89jR7M3a0Tx2NDCY2rHOvVsvOG4n9E9Ta7gKPqzAltor1DoulienWK8lZ9W9P7lgk7E3uZrr3xxYV_9CdsBFFZ9PAmuw-hPZFBdxduhjRrcYn-J_HvsPz4ychA</recordid><startdate>20061010</startdate><enddate>20061010</enddate><creator>Salamon, Peter</creator><creator>Fernàndez-Garcia, Daniel</creator><creator>Gómez-Hernández, J. Jaime</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20061010</creationdate><title>A review and numerical assessment of the random walk particle tracking method</title><author>Salamon, Peter ; Fernàndez-Garcia, Daniel ; Gómez-Hernández, J. Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-ede7a620f8036c70d96f89420477bf57fc0dd890c49cc0d59869418161b0ccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>aquifers</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>generalized stochastic differential equations</topic><topic>groundwater contamination</topic><topic>groundwater flow</topic><topic>Heterogeneity</topic><topic>hydraulic conductivity</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>literature reviews</topic><topic>Local mass conservation</topic><topic>mathematical models</topic><topic>mathematics and statistics</topic><topic>Models, Chemical</topic><topic>Numerical implementation</topic><topic>pollutants</topic><topic>Pollution, environment geology</topic><topic>porous media</topic><topic>Random walk</topic><topic>random walk particle tracking method</topic><topic>Solute transport</topic><topic>solutes</topic><topic>Stochastic Processes</topic><topic>Water Movements</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Fernàndez-Garcia, Daniel</creatorcontrib><creatorcontrib>Gómez-Hernández, J. Jaime</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salamon, Peter</au><au>Fernàndez-Garcia, Daniel</au><au>Gómez-Hernández, J. Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review and numerical assessment of the random walk particle tracking method</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2006-10-10</date><risdate>2006</risdate><volume>87</volume><issue>3</issue><spage>277</spage><epage>305</epage><pages>277-305</pages><issn>0169-7722</issn><eissn>1873-6009</eissn><coden>JCOHE6</coden><abstract>We review the basic mathematical concepts of random walk particle tracking (RWPT) and its advantages and limitations. Three different numerical approaches to overcome the local mass conservation problem of the random walk methodology are examined: (i) the interpolation method, (ii) the reflection principle, and (iii) the generalized stochastic differential equations (GSDE). Analytical solutions of the spatial moments for a two-layer system are compared to model predictions using the different techniques and results demonstrate that the interpolation method reproduces correctly average velocity, but fails to reproduce macrodispersion at higher hydraulic conductivity contrasts between the two layers. On the contrary, the reflection principle and the GSDE approach underestimate average velocity, but reproduce macrodispersion better for high contrasts. The different behavior is based on an artificial shift of mass for increasing heterogeneities for the GSDE approach and the reflection principle, whereas the interpolation method suffers from the smoothing of the dispersion tensor. The behavior of these approaches was furthermore analyzed in two-dimensional heterogeneous hydraulic conductivity fields, which are characterized by different random function models. Solute transport was simulated correctly by all three approaches for the reference fields having Gaussian structures or non-Gaussian structures with an isotropic spatial correlation, even for a variance of the natural log of hydraulic conductivity of
σ
ln
K
2
=
4. However, for the non-Gaussian model with a strong anisotropic spatial correlation and a variance of
σ
ln
K
2
=
2 and higher, the interpolation method was the only technique modelling solute transport correctly. Furthermore, we discuss the general applicability of random walk particle tracking in comparison to the standard transport models and conclude that in advection-dominated problems using a high spatial discretization or requiring the performance of many model runs, RWPT represents a good alternative for modelling contaminant transport.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16839642</pmid><doi>10.1016/j.jconhyd.2006.05.005</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-7722 |
ispartof | Journal of contaminant hydrology, 2006-10, Vol.87 (3), p.277-305 |
issn | 0169-7722 1873-6009 |
language | eng |
recordid | cdi_proquest_miscellaneous_19940932 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | aquifers Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology generalized stochastic differential equations groundwater contamination groundwater flow Heterogeneity hydraulic conductivity Hydrogeology Hydrology. Hydrogeology literature reviews Local mass conservation mathematical models mathematics and statistics Models, Chemical Numerical implementation pollutants Pollution, environment geology porous media Random walk random walk particle tracking method Solute transport solutes Stochastic Processes Water Movements Water Pollutants, Chemical - chemistry |
title | A review and numerical assessment of the random walk particle tracking method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20and%20numerical%20assessment%20of%20the%20random%20walk%20particle%20tracking%20method&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Salamon,%20Peter&rft.date=2006-10-10&rft.volume=87&rft.issue=3&rft.spage=277&rft.epage=305&rft.pages=277-305&rft.issn=0169-7722&rft.eissn=1873-6009&rft.coden=JCOHE6&rft_id=info:doi/10.1016/j.jconhyd.2006.05.005&rft_dat=%3Cproquest_cross%3E19940932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19940932&rft_id=info:pmid/16839642&rft_els_id=S0169772206000957&rfr_iscdi=true |