Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling

Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2018-02, Vol.26 (2), p.282-294.e6
Hauptverfasser: Harrer, Nadine, Schindler, Christina E.M., Bruetzel, Linda K., Forné, Ignasi, Ludwigsen, Johanna, Imhof, Axel, Zacharias, Martin, Lipfert, Jan, Mueller-Planitz, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294.e6
container_issue 2
container_start_page 282
container_title Structure (London)
container_volume 26
creator Harrer, Nadine
Schindler, Christina E.M.
Bruetzel, Linda K.
Forné, Ignasi
Ludwigsen, Johanna
Imhof, Axel
Zacharias, Martin
Lipfert, Jan
Mueller-Planitz, Felix
description Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, and computational modeling. The resulting structural model shows the ATPase module in a resting state with both ATPase lobes twisted against each other, providing support for a conformation that was recently trapped by crystallography. The autoinhibiting NegC region does not protrude from the ATPase module as suggested previously. The regulatory NTR domain is located near both ATPase lobes. The full-length enzyme is flexible and can adopt a compact structure in solution with the C-terminal HSS domain packing against the ATPase module. Our data imply a series of conformational changes upon activation of the enzyme and illustrate how the NTR, NegC, and HSS domains contribute to regulation of the ATPase module. [Display omitted] •Full-length DmISWI structure revealed by XL-MS, SAXS, and computational modeling•The two ATPase lobes are captured in a resting state in solution•The flanking NTR and HSS domains pack against the ATPase core•Large conformational changes are predicted upon binding to the nucleosome Harrer et al. reconstruct the conformation of the full-length ISWI chromatin remodeling enzyme in solution using an integrative structural approach. The model captures ISWI in the resting state and implies dramatic conformational changes upon binding to its nucleosome substrate.
doi_str_mv 10.1016/j.str.2017.12.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993994985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212617304409</els_id><sourcerecordid>1993994985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2ebcab1190a8e143e656623628e804995618592977bd4ad24c8f7a07818ecff73</originalsourceid><addsrcrecordid>eNp9kE2P0zAQQC0EYrsLP4AL8pFDEzxO4tjiVBVYKnVBIiC4Wa4zYV3y0bUdpD3w33HUhSMna-Q3T5pHyAtgOTAQr495iD7nDOoceM6gekRWIGuZlSDFY7JiSqiMAxcX5DKEI2OMV4w9JRdcFaqqZbUiv5voZxtnb3q68fbWRVwmpFNH4y3Sj7PtcQrTgPQzDlOLPXq6a77t6FuM6Ac3Yks7Pw1066cQsr0bf7rxx5remBBoc0q29InR369ps_nerKkZW3qziBL2jDzpTB_w-cN7Rb6-f_dl-yHbf7rebTf7zBZKxIzjwZoDgGJGIpQFikoIXgguUbJSqUqArBRXdX1oS9Py0squNqyWINF2XV1ckVdn78lPdzOGqAcXLPa9GXGagwaVgqhSySqhcEbtco_HTp-8G4y_18D0Ul0fdaqul-oauE7V087LB_18GLD9t_E3cwLenAFMR_5y6HWwDkeLrfOpkG4n9x_9H77vkuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993994985</pqid></control><display><type>article</type><title>Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Harrer, Nadine ; Schindler, Christina E.M. ; Bruetzel, Linda K. ; Forné, Ignasi ; Ludwigsen, Johanna ; Imhof, Axel ; Zacharias, Martin ; Lipfert, Jan ; Mueller-Planitz, Felix</creator><creatorcontrib>Harrer, Nadine ; Schindler, Christina E.M. ; Bruetzel, Linda K. ; Forné, Ignasi ; Ludwigsen, Johanna ; Imhof, Axel ; Zacharias, Martin ; Lipfert, Jan ; Mueller-Planitz, Felix</creatorcontrib><description>Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, and computational modeling. The resulting structural model shows the ATPase module in a resting state with both ATPase lobes twisted against each other, providing support for a conformation that was recently trapped by crystallography. The autoinhibiting NegC region does not protrude from the ATPase module as suggested previously. The regulatory NTR domain is located near both ATPase lobes. The full-length enzyme is flexible and can adopt a compact structure in solution with the C-terminal HSS domain packing against the ATPase module. Our data imply a series of conformational changes upon activation of the enzyme and illustrate how the NTR, NegC, and HSS domains contribute to regulation of the ATPase module. [Display omitted] •Full-length DmISWI structure revealed by XL-MS, SAXS, and computational modeling•The two ATPase lobes are captured in a resting state in solution•The flanking NTR and HSS domains pack against the ATPase core•Large conformational changes are predicted upon binding to the nucleosome Harrer et al. reconstruct the conformation of the full-length ISWI chromatin remodeling enzyme in solution using an integrative structural approach. The model captures ISWI in the resting state and implies dramatic conformational changes upon binding to its nucleosome substrate.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2017.12.015</identifier><identifier>PMID: 29395785</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adenosine Triphosphatases - metabolism ; Animals ; chromatin ; Chromatin Assembly and Disassembly - physiology ; cross-linking ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; ISWI ; Mass Spectrometry ; Models, Molecular ; nucleosome remodeling ; Nucleosomes - metabolism ; Protein Binding ; Scattering, Small Angle ; small-angle X-ray scattering ; Snf2 ATPase ; structural modeling ; structural MS ; Transcription Factors - metabolism ; X-Ray Diffraction ; XL-MS</subject><ispartof>Structure (London), 2018-02, Vol.26 (2), p.282-294.e6</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2ebcab1190a8e143e656623628e804995618592977bd4ad24c8f7a07818ecff73</citedby><cites>FETCH-LOGICAL-c396t-2ebcab1190a8e143e656623628e804995618592977bd4ad24c8f7a07818ecff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969212617304409$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29395785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrer, Nadine</creatorcontrib><creatorcontrib>Schindler, Christina E.M.</creatorcontrib><creatorcontrib>Bruetzel, Linda K.</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Ludwigsen, Johanna</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Mueller-Planitz, Felix</creatorcontrib><title>Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, and computational modeling. The resulting structural model shows the ATPase module in a resting state with both ATPase lobes twisted against each other, providing support for a conformation that was recently trapped by crystallography. The autoinhibiting NegC region does not protrude from the ATPase module as suggested previously. The regulatory NTR domain is located near both ATPase lobes. The full-length enzyme is flexible and can adopt a compact structure in solution with the C-terminal HSS domain packing against the ATPase module. Our data imply a series of conformational changes upon activation of the enzyme and illustrate how the NTR, NegC, and HSS domains contribute to regulation of the ATPase module. [Display omitted] •Full-length DmISWI structure revealed by XL-MS, SAXS, and computational modeling•The two ATPase lobes are captured in a resting state in solution•The flanking NTR and HSS domains pack against the ATPase core•Large conformational changes are predicted upon binding to the nucleosome Harrer et al. reconstruct the conformation of the full-length ISWI chromatin remodeling enzyme in solution using an integrative structural approach. The model captures ISWI in the resting state and implies dramatic conformational changes upon binding to its nucleosome substrate.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Animals</subject><subject>chromatin</subject><subject>Chromatin Assembly and Disassembly - physiology</subject><subject>cross-linking</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>ISWI</subject><subject>Mass Spectrometry</subject><subject>Models, Molecular</subject><subject>nucleosome remodeling</subject><subject>Nucleosomes - metabolism</subject><subject>Protein Binding</subject><subject>Scattering, Small Angle</subject><subject>small-angle X-ray scattering</subject><subject>Snf2 ATPase</subject><subject>structural modeling</subject><subject>structural MS</subject><subject>Transcription Factors - metabolism</subject><subject>X-Ray Diffraction</subject><subject>XL-MS</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2P0zAQQC0EYrsLP4AL8pFDEzxO4tjiVBVYKnVBIiC4Wa4zYV3y0bUdpD3w33HUhSMna-Q3T5pHyAtgOTAQr495iD7nDOoceM6gekRWIGuZlSDFY7JiSqiMAxcX5DKEI2OMV4w9JRdcFaqqZbUiv5voZxtnb3q68fbWRVwmpFNH4y3Sj7PtcQrTgPQzDlOLPXq6a77t6FuM6Ac3Yks7Pw1066cQsr0bf7rxx5remBBoc0q29InR369ps_nerKkZW3qziBL2jDzpTB_w-cN7Rb6-f_dl-yHbf7rebTf7zBZKxIzjwZoDgGJGIpQFikoIXgguUbJSqUqArBRXdX1oS9Py0squNqyWINF2XV1ckVdn78lPdzOGqAcXLPa9GXGagwaVgqhSySqhcEbtco_HTp-8G4y_18D0Ul0fdaqul-oauE7V087LB_18GLD9t_E3cwLenAFMR_5y6HWwDkeLrfOpkG4n9x_9H77vkuo</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>Harrer, Nadine</creator><creator>Schindler, Christina E.M.</creator><creator>Bruetzel, Linda K.</creator><creator>Forné, Ignasi</creator><creator>Ludwigsen, Johanna</creator><creator>Imhof, Axel</creator><creator>Zacharias, Martin</creator><creator>Lipfert, Jan</creator><creator>Mueller-Planitz, Felix</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180206</creationdate><title>Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling</title><author>Harrer, Nadine ; Schindler, Christina E.M. ; Bruetzel, Linda K. ; Forné, Ignasi ; Ludwigsen, Johanna ; Imhof, Axel ; Zacharias, Martin ; Lipfert, Jan ; Mueller-Planitz, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2ebcab1190a8e143e656623628e804995618592977bd4ad24c8f7a07818ecff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Animals</topic><topic>chromatin</topic><topic>Chromatin Assembly and Disassembly - physiology</topic><topic>cross-linking</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>ISWI</topic><topic>Mass Spectrometry</topic><topic>Models, Molecular</topic><topic>nucleosome remodeling</topic><topic>Nucleosomes - metabolism</topic><topic>Protein Binding</topic><topic>Scattering, Small Angle</topic><topic>small-angle X-ray scattering</topic><topic>Snf2 ATPase</topic><topic>structural modeling</topic><topic>structural MS</topic><topic>Transcription Factors - metabolism</topic><topic>X-Ray Diffraction</topic><topic>XL-MS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrer, Nadine</creatorcontrib><creatorcontrib>Schindler, Christina E.M.</creatorcontrib><creatorcontrib>Bruetzel, Linda K.</creatorcontrib><creatorcontrib>Forné, Ignasi</creatorcontrib><creatorcontrib>Ludwigsen, Johanna</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><creatorcontrib>Lipfert, Jan</creatorcontrib><creatorcontrib>Mueller-Planitz, Felix</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrer, Nadine</au><au>Schindler, Christina E.M.</au><au>Bruetzel, Linda K.</au><au>Forné, Ignasi</au><au>Ludwigsen, Johanna</au><au>Imhof, Axel</au><au>Zacharias, Martin</au><au>Lipfert, Jan</au><au>Mueller-Planitz, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2018-02-06</date><risdate>2018</risdate><volume>26</volume><issue>2</issue><spage>282</spage><epage>294.e6</epage><pages>282-294.e6</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, and computational modeling. The resulting structural model shows the ATPase module in a resting state with both ATPase lobes twisted against each other, providing support for a conformation that was recently trapped by crystallography. The autoinhibiting NegC region does not protrude from the ATPase module as suggested previously. The regulatory NTR domain is located near both ATPase lobes. The full-length enzyme is flexible and can adopt a compact structure in solution with the C-terminal HSS domain packing against the ATPase module. Our data imply a series of conformational changes upon activation of the enzyme and illustrate how the NTR, NegC, and HSS domains contribute to regulation of the ATPase module. [Display omitted] •Full-length DmISWI structure revealed by XL-MS, SAXS, and computational modeling•The two ATPase lobes are captured in a resting state in solution•The flanking NTR and HSS domains pack against the ATPase core•Large conformational changes are predicted upon binding to the nucleosome Harrer et al. reconstruct the conformation of the full-length ISWI chromatin remodeling enzyme in solution using an integrative structural approach. The model captures ISWI in the resting state and implies dramatic conformational changes upon binding to its nucleosome substrate.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>29395785</pmid><doi>10.1016/j.str.2017.12.015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2018-02, Vol.26 (2), p.282-294.e6
issn 0969-2126
1878-4186
language eng
recordid cdi_proquest_miscellaneous_1993994985
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - metabolism
Animals
chromatin
Chromatin Assembly and Disassembly - physiology
cross-linking
Drosophila melanogaster
Drosophila Proteins - metabolism
ISWI
Mass Spectrometry
Models, Molecular
nucleosome remodeling
Nucleosomes - metabolism
Protein Binding
Scattering, Small Angle
small-angle X-ray scattering
Snf2 ATPase
structural modeling
structural MS
Transcription Factors - metabolism
X-Ray Diffraction
XL-MS
title Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Architecture%20of%20the%20Nucleosome%20Remodeler%20ISWI%20Determined%20from%20Cross-Linking,%20Mass%20Spectrometry,%20SAXS,%20and%20Modeling&rft.jtitle=Structure%20(London)&rft.au=Harrer,%20Nadine&rft.date=2018-02-06&rft.volume=26&rft.issue=2&rft.spage=282&rft.epage=294.e6&rft.pages=282-294.e6&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2017.12.015&rft_dat=%3Cproquest_cross%3E1993994985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993994985&rft_id=info:pmid/29395785&rft_els_id=S0969212617304409&rfr_iscdi=true