Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw st...
Gespeichert in:
Veröffentlicht in: | Biotechnology journal 2018-05, Vol.13 (5), p.e1700517-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | e1700517 |
container_title | Biotechnology journal |
container_volume | 13 |
creator | Okano, Kenji Uematsu, Gentaro Hama, Shinji Tanaka, Tsutomu Noda, Hideo Kondo, Akihiko Honda, Kohsuke |
description | Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials.
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials. |
doi_str_mv | 10.1002/biot.201700517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993991618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993991618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqWwMiKPLCl24sTJWEoLlYqKoMyR7VyKIYmLnajqxiPwjDwJiVpgZLo76ft_6T6EzikZUkL8K6lNPfQJ5YSElB-gPo0j4vGAssP9HvEo7qET514JYWFA2DHq-UmQBGEc9tHbPdRCmkIrPKlWugKwulphk-O5ULWRQumiaBxeF6KqhW1KnBuLb7QFVePi6-Ozw9rwSOkMP1iTNe1pKjy1psSPYoPHxlb4qY2ql1N0lIvCwdl-DtDzdLIc33nzxe1sPJp7ilHKPZkRwiVnucgilsUClIQkCkmU5wkwwTkEwheKABDgLOYgAgoxDamQ1GcQBwN0uetdW_PegKvTUjsFRfsCmMalNGnfT2hEO3S4Q5U1zlnI07XVpbDblJK0E5x2gtNfwW3gYt_dyBKyX_zHaAskO2CjC9j-U5dezxbLv_Jvgh2J7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993991618</pqid></control><display><type>article</type><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</creator><creatorcontrib>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</creatorcontrib><description>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials.
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.201700517</identifier><identifier>PMID: 29393585</identifier><language>eng</language><publisher>Germany</publisher><subject>Escherichia coli - genetics ; Escherichia coli - metabolism ; Glucose - metabolism ; L-Lactate Dehydrogenase - genetics ; L-Lactate Dehydrogenase - metabolism ; lactate dehydrogenase ; lactate racemase ; Lactic Acid - analysis ; Lactic Acid - metabolism ; Lactobacillus plantarum ; Lactobacillus plantarum - genetics ; Lactobacillus plantarum - metabolism ; l‐Lactic acid ; Metabolic Engineering - methods ; Racemases and Epimerases - genetics ; Racemases and Epimerases - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Starch - metabolism ; α‐Amylase</subject><ispartof>Biotechnology journal, 2018-05, Vol.13 (5), p.e1700517-n/a</ispartof><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</citedby><cites>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</cites><orcidid>0000-0002-9112-3211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.201700517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.201700517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29393585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okano, Kenji</creatorcontrib><creatorcontrib>Uematsu, Gentaro</creatorcontrib><creatorcontrib>Hama, Shinji</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Noda, Hideo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><creatorcontrib>Honda, Kohsuke</creatorcontrib><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><title>Biotechnology journal</title><addtitle>Biotechnol J</addtitle><description>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials.
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</description><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Glucose - metabolism</subject><subject>L-Lactate Dehydrogenase - genetics</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>lactate dehydrogenase</subject><subject>lactate racemase</subject><subject>Lactic Acid - analysis</subject><subject>Lactic Acid - metabolism</subject><subject>Lactobacillus plantarum</subject><subject>Lactobacillus plantarum - genetics</subject><subject>Lactobacillus plantarum - metabolism</subject><subject>l‐Lactic acid</subject><subject>Metabolic Engineering - methods</subject><subject>Racemases and Epimerases - genetics</subject><subject>Racemases and Epimerases - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Starch - metabolism</subject><subject>α‐Amylase</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAQhi0EoqWwMiKPLCl24sTJWEoLlYqKoMyR7VyKIYmLnajqxiPwjDwJiVpgZLo76ft_6T6EzikZUkL8K6lNPfQJ5YSElB-gPo0j4vGAssP9HvEo7qET514JYWFA2DHq-UmQBGEc9tHbPdRCmkIrPKlWugKwulphk-O5ULWRQumiaBxeF6KqhW1KnBuLb7QFVePi6-Ozw9rwSOkMP1iTNe1pKjy1psSPYoPHxlb4qY2ql1N0lIvCwdl-DtDzdLIc33nzxe1sPJp7ilHKPZkRwiVnucgilsUClIQkCkmU5wkwwTkEwheKABDgLOYgAgoxDamQ1GcQBwN0uetdW_PegKvTUjsFRfsCmMalNGnfT2hEO3S4Q5U1zlnI07XVpbDblJK0E5x2gtNfwW3gYt_dyBKyX_zHaAskO2CjC9j-U5dezxbLv_Jvgh2J7g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Okano, Kenji</creator><creator>Uematsu, Gentaro</creator><creator>Hama, Shinji</creator><creator>Tanaka, Tsutomu</creator><creator>Noda, Hideo</creator><creator>Kondo, Akihiko</creator><creator>Honda, Kohsuke</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9112-3211</orcidid></search><sort><creationdate>201805</creationdate><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><author>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Glucose - metabolism</topic><topic>L-Lactate Dehydrogenase - genetics</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>lactate dehydrogenase</topic><topic>lactate racemase</topic><topic>Lactic Acid - analysis</topic><topic>Lactic Acid - metabolism</topic><topic>Lactobacillus plantarum</topic><topic>Lactobacillus plantarum - genetics</topic><topic>Lactobacillus plantarum - metabolism</topic><topic>l‐Lactic acid</topic><topic>Metabolic Engineering - methods</topic><topic>Racemases and Epimerases - genetics</topic><topic>Racemases and Epimerases - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Starch - metabolism</topic><topic>α‐Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okano, Kenji</creatorcontrib><creatorcontrib>Uematsu, Gentaro</creatorcontrib><creatorcontrib>Hama, Shinji</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Noda, Hideo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><creatorcontrib>Honda, Kohsuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okano, Kenji</au><au>Uematsu, Gentaro</au><au>Hama, Shinji</au><au>Tanaka, Tsutomu</au><au>Noda, Hideo</au><au>Kondo, Akihiko</au><au>Honda, Kohsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnol J</addtitle><date>2018-05</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e1700517</spage><epage>n/a</epage><pages>e1700517-n/a</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials.
Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</abstract><cop>Germany</cop><pmid>29393585</pmid><doi>10.1002/biot.201700517</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9112-3211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-6768 |
ispartof | Biotechnology journal, 2018-05, Vol.13 (5), p.e1700517-n/a |
issn | 1860-6768 1860-7314 |
language | eng |
recordid | cdi_proquest_miscellaneous_1993991618 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Escherichia coli - genetics Escherichia coli - metabolism Glucose - metabolism L-Lactate Dehydrogenase - genetics L-Lactate Dehydrogenase - metabolism lactate dehydrogenase lactate racemase Lactic Acid - analysis Lactic Acid - metabolism Lactobacillus plantarum Lactobacillus plantarum - genetics Lactobacillus plantarum - metabolism l‐Lactic acid Metabolic Engineering - methods Racemases and Epimerases - genetics Racemases and Epimerases - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism Starch - metabolism α‐Amylase |
title | Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Lactobacillus%20plantarum%20for%20Direct%20l%E2%80%90Lactic%20Acid%20Production%20From%20Raw%20Corn%20Starch&rft.jtitle=Biotechnology%20journal&rft.au=Okano,%20Kenji&rft.date=2018-05&rft.volume=13&rft.issue=5&rft.spage=e1700517&rft.epage=n/a&rft.pages=e1700517-n/a&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.201700517&rft_dat=%3Cproquest_cross%3E1993991618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993991618&rft_id=info:pmid/29393585&rfr_iscdi=true |