Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch

Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology journal 2018-05, Vol.13 (5), p.e1700517-n/a
Hauptverfasser: Okano, Kenji, Uematsu, Gentaro, Hama, Shinji, Tanaka, Tsutomu, Noda, Hideo, Kondo, Akihiko, Honda, Kohsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e1700517
container_title Biotechnology journal
container_volume 13
creator Okano, Kenji
Uematsu, Gentaro
Hama, Shinji
Tanaka, Tsutomu
Noda, Hideo
Kondo, Akihiko
Honda, Kohsuke
description Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials. Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.
doi_str_mv 10.1002/biot.201700517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993991618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993991618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqWwMiKPLCl24sTJWEoLlYqKoMyR7VyKIYmLnajqxiPwjDwJiVpgZLo76ft_6T6EzikZUkL8K6lNPfQJ5YSElB-gPo0j4vGAssP9HvEo7qET514JYWFA2DHq-UmQBGEc9tHbPdRCmkIrPKlWugKwulphk-O5ULWRQumiaBxeF6KqhW1KnBuLb7QFVePi6-Ozw9rwSOkMP1iTNe1pKjy1psSPYoPHxlb4qY2ql1N0lIvCwdl-DtDzdLIc33nzxe1sPJp7ilHKPZkRwiVnucgilsUClIQkCkmU5wkwwTkEwheKABDgLOYgAgoxDamQ1GcQBwN0uetdW_PegKvTUjsFRfsCmMalNGnfT2hEO3S4Q5U1zlnI07XVpbDblJK0E5x2gtNfwW3gYt_dyBKyX_zHaAskO2CjC9j-U5dezxbLv_Jvgh2J7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993991618</pqid></control><display><type>article</type><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</creator><creatorcontrib>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</creatorcontrib><description>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials. Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.201700517</identifier><identifier>PMID: 29393585</identifier><language>eng</language><publisher>Germany</publisher><subject>Escherichia coli - genetics ; Escherichia coli - metabolism ; Glucose - metabolism ; L-Lactate Dehydrogenase - genetics ; L-Lactate Dehydrogenase - metabolism ; lactate dehydrogenase ; lactate racemase ; Lactic Acid - analysis ; Lactic Acid - metabolism ; Lactobacillus plantarum ; Lactobacillus plantarum - genetics ; Lactobacillus plantarum - metabolism ; l‐Lactic acid ; Metabolic Engineering - methods ; Racemases and Epimerases - genetics ; Racemases and Epimerases - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Starch - metabolism ; α‐Amylase</subject><ispartof>Biotechnology journal, 2018-05, Vol.13 (5), p.e1700517-n/a</ispartof><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</citedby><cites>FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</cites><orcidid>0000-0002-9112-3211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.201700517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.201700517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29393585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okano, Kenji</creatorcontrib><creatorcontrib>Uematsu, Gentaro</creatorcontrib><creatorcontrib>Hama, Shinji</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Noda, Hideo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><creatorcontrib>Honda, Kohsuke</creatorcontrib><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><title>Biotechnology journal</title><addtitle>Biotechnol J</addtitle><description>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials. Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</description><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Glucose - metabolism</subject><subject>L-Lactate Dehydrogenase - genetics</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>lactate dehydrogenase</subject><subject>lactate racemase</subject><subject>Lactic Acid - analysis</subject><subject>Lactic Acid - metabolism</subject><subject>Lactobacillus plantarum</subject><subject>Lactobacillus plantarum - genetics</subject><subject>Lactobacillus plantarum - metabolism</subject><subject>l‐Lactic acid</subject><subject>Metabolic Engineering - methods</subject><subject>Racemases and Epimerases - genetics</subject><subject>Racemases and Epimerases - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Starch - metabolism</subject><subject>α‐Amylase</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAQhi0EoqWwMiKPLCl24sTJWEoLlYqKoMyR7VyKIYmLnajqxiPwjDwJiVpgZLo76ft_6T6EzikZUkL8K6lNPfQJ5YSElB-gPo0j4vGAssP9HvEo7qET514JYWFA2DHq-UmQBGEc9tHbPdRCmkIrPKlWugKwulphk-O5ULWRQumiaBxeF6KqhW1KnBuLb7QFVePi6-Ozw9rwSOkMP1iTNe1pKjy1psSPYoPHxlb4qY2ql1N0lIvCwdl-DtDzdLIc33nzxe1sPJp7ilHKPZkRwiVnucgilsUClIQkCkmU5wkwwTkEwheKABDgLOYgAgoxDamQ1GcQBwN0uetdW_PegKvTUjsFRfsCmMalNGnfT2hEO3S4Q5U1zlnI07XVpbDblJK0E5x2gtNfwW3gYt_dyBKyX_zHaAskO2CjC9j-U5dezxbLv_Jvgh2J7g</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Okano, Kenji</creator><creator>Uematsu, Gentaro</creator><creator>Hama, Shinji</creator><creator>Tanaka, Tsutomu</creator><creator>Noda, Hideo</creator><creator>Kondo, Akihiko</creator><creator>Honda, Kohsuke</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9112-3211</orcidid></search><sort><creationdate>201805</creationdate><title>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</title><author>Okano, Kenji ; Uematsu, Gentaro ; Hama, Shinji ; Tanaka, Tsutomu ; Noda, Hideo ; Kondo, Akihiko ; Honda, Kohsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4117-bd007b74fad64d8aecbe96506ff9e4a77e3a2ac0ee0e7487ea31e8151ab124e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Glucose - metabolism</topic><topic>L-Lactate Dehydrogenase - genetics</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>lactate dehydrogenase</topic><topic>lactate racemase</topic><topic>Lactic Acid - analysis</topic><topic>Lactic Acid - metabolism</topic><topic>Lactobacillus plantarum</topic><topic>Lactobacillus plantarum - genetics</topic><topic>Lactobacillus plantarum - metabolism</topic><topic>l‐Lactic acid</topic><topic>Metabolic Engineering - methods</topic><topic>Racemases and Epimerases - genetics</topic><topic>Racemases and Epimerases - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Starch - metabolism</topic><topic>α‐Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okano, Kenji</creatorcontrib><creatorcontrib>Uematsu, Gentaro</creatorcontrib><creatorcontrib>Hama, Shinji</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Noda, Hideo</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><creatorcontrib>Honda, Kohsuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okano, Kenji</au><au>Uematsu, Gentaro</au><au>Hama, Shinji</au><au>Tanaka, Tsutomu</au><au>Noda, Hideo</au><au>Kondo, Akihiko</au><au>Honda, Kohsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnol J</addtitle><date>2018-05</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e1700517</spage><epage>n/a</epage><pages>e1700517-n/a</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. For cost‐effective LA production, an engineered Lactobacillus plantarum NCIMB 8826 strain, which enables the production of optically pure l‐LA from raw starch, is constructed. The wild‐type strain produces a racemic mixture of d‐ and l‐LA from pyruvate by the action of the respective lactate dehydrogenases (LDHs). Therefore, the gene encoding D‐LDH (ldhD) is deleted. Although no decrease in d‐LA formation is observed in the ΔldhD mutant, additional disruption of the operon encoding lactate racemase (larA‐E), which catalyzes the interconversion between d‐ and l‐LA, completely abolished d‐LA production. From 100 g L−1 glucose, the ΔldhD ΔlarA‐E mutant produces 87.0 g L−1 of l‐LA with an optical purity of 99.4%. Subsequently, a plasmid is introduced into the ΔldhD ΔlarA‐E mutant for the secretion of α‐amylase from Streptococcus bovis 148. The resulting strain could produce 50.3 g L−1 of l‐LA from raw corn starch with a yield of 0.91 (g per g of consumed sugar) and an optical purity of 98.6%. The engineered L. plantarum strain would be useful in the production of l‐LA from starchy materials. Fermentative production of optically pure lactic acid (LA) has attracted great interest because of the increased demand for plant‐based plastics. In this study, production of optically pure l‐LA is achieved by double‐knockout of the gene encoding D‐lactate dehydrogenase (ldhD) and the operon encoding lactate racemase (larA‐E) in Lactobacillus plantarum NCIMB 8826 strain. In addition, direct l‐LA production is achieved by introducing the plasmid for secretion of α‐amylase from Streptococcus bovis 148 to the ΔldhD ΔlarA‐E strain. The engineered L. pantarum strain would be applicable for l‐LA production from starchy materials.</abstract><cop>Germany</cop><pmid>29393585</pmid><doi>10.1002/biot.201700517</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9112-3211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1860-6768
ispartof Biotechnology journal, 2018-05, Vol.13 (5), p.e1700517-n/a
issn 1860-6768
1860-7314
language eng
recordid cdi_proquest_miscellaneous_1993991618
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Escherichia coli - genetics
Escherichia coli - metabolism
Glucose - metabolism
L-Lactate Dehydrogenase - genetics
L-Lactate Dehydrogenase - metabolism
lactate dehydrogenase
lactate racemase
Lactic Acid - analysis
Lactic Acid - metabolism
Lactobacillus plantarum
Lactobacillus plantarum - genetics
Lactobacillus plantarum - metabolism
l‐Lactic acid
Metabolic Engineering - methods
Racemases and Epimerases - genetics
Racemases and Epimerases - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Starch - metabolism
α‐Amylase
title Metabolic Engineering of Lactobacillus plantarum for Direct l‐Lactic Acid Production From Raw Corn Starch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Lactobacillus%20plantarum%20for%20Direct%20l%E2%80%90Lactic%20Acid%20Production%20From%20Raw%20Corn%20Starch&rft.jtitle=Biotechnology%20journal&rft.au=Okano,%20Kenji&rft.date=2018-05&rft.volume=13&rft.issue=5&rft.spage=e1700517&rft.epage=n/a&rft.pages=e1700517-n/a&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.201700517&rft_dat=%3Cproquest_cross%3E1993991618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993991618&rft_id=info:pmid/29393585&rfr_iscdi=true