Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry
The reaction of n‐C8H17B[N(Me)SiMe3]2 (1) with n‐C8H17BCl2 (2 a) yielded, instead of a linear poly(iminoborane), the aminoborane n‐C8H17B(Cl)N(Me)SiMe3 (4) and after cyclotrimerization the borazine cyclo‐(n‐C8H17BNMe)3 (6). Side reactions that result in borazine formation were effectively suppressed...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-04, Vol.24 (22), p.5883-5894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5894 |
---|---|
container_issue | 22 |
container_start_page | 5883 |
container_title | Chemistry : a European journal |
container_volume | 24 |
creator | Ayhan, Ozan Riensch, Nicolas A. Glasmacher, Clemens Helten, Holger |
description | The reaction of n‐C8H17B[N(Me)SiMe3]2 (1) with n‐C8H17BCl2 (2 a) yielded, instead of a linear poly(iminoborane), the aminoborane n‐C8H17B(Cl)N(Me)SiMe3 (4) and after cyclotrimerization the borazine cyclo‐(n‐C8H17BNMe)3 (6). Side reactions that result in borazine formation were effectively suppressed if 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaborolidines 7 were employed as co‐monomers in combination with dichloro‐ or dibromoboranes 2 or 8, respectively. Silicon/boron exchange polycondensation led to oligo(iminoborane)s 11 a,b,ac,d. Alternative synthetic routes to such species involve Sn/B exchange of 1,3‐bis(trimethylstannyl)‐2‐n‐octyl‐1,3,2‐diazaborolidine (16) and n‐C8H17BBr2 (8 a), and the initiated polycondensation of the dormant monomer 14 in the presence of a Brønsted acid (HCl, HOTf, or HNTf2; Tf=trifluoromethylsulfonyl). Although an attempt to obtain an oligo‐/poly(iminoborane) with phenyl side groups yielded only insoluble material, the incorporation of aryl groups was proven for a derivative with both phenyl and n‐octyl boron substituents (11 ac), as well as for a derivative with 4‐n‐butylphenyl side groups (11 d). The highest‐molecular‐weight sample obtained was 11 ac. Featuring about 18 catenated BN units, on average, this is the closest approach to a poly(iminoborane) known.
Drawing a line under polymerization: Well‐defined oligo(iminoborane)s with up to 18 catenated BN units, on average, were prepared by Si/B or Sn/B exchange polycondensation and initiated polymerization of a dormant monomer (see scheme). The cyclolinear backbone imparts high stability and precludes the unwanted formation of borazine byproducts. The properties of the new materials are effectively tuned by variation of their side groups. |
doi_str_mv | 10.1002/chem.201705913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993016077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025901384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-f700304fde95c24576e8686ac6cdbddc54ff92813fe431711fae540012da45153</originalsourceid><addsrcrecordid>eNqFkb9uFDEQhy0EIsdBS4lWognFHuP_Zzq0CkmkO4Ui1JbP6704eO3DzgptxyPwjDwJji4EiYbKGumbzzPzQ-g1hhUGIO_tjRtXBLAErjB9ghaYE9xSKfhTtADFZCs4VSfoRSm3AKAEpc_RCVFUSirkAh262YYUfHQmN1fB79OvHz8bE_vmcwrzqR99TLuUTXTvyofm-sY1W1-Kj_tm4-PXxsfmMqa8N9HbZmt8rN3nOU2HWticxhScnUJVd3VOX-7y_BI9G0wo7tXDu0RfPp1ddxft5ur8svu4aS3DQNtBAlBgQ-8Ut4RxKdxarIWxwva7vrecDYMia0wHxyiWGA_GcQaASW8Yx5wu0enRe8jp2-TKna7_WxdCXSVNRWOlKGAB9Q5L9PYf9DZNOdbpNAHCFWC6ZpVaHam6VynZDfqQ_WjyrDHo-yz0fRb6MYva8OZBO-1G1z_if45fAXUEvvvg5v_odHdxtv0r_w3XnJcy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025901384</pqid></control><display><type>article</type><title>Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ayhan, Ozan ; Riensch, Nicolas A. ; Glasmacher, Clemens ; Helten, Holger</creator><creatorcontrib>Ayhan, Ozan ; Riensch, Nicolas A. ; Glasmacher, Clemens ; Helten, Holger</creatorcontrib><description>The reaction of n‐C8H17B[N(Me)SiMe3]2 (1) with n‐C8H17BCl2 (2 a) yielded, instead of a linear poly(iminoborane), the aminoborane n‐C8H17B(Cl)N(Me)SiMe3 (4) and after cyclotrimerization the borazine cyclo‐(n‐C8H17BNMe)3 (6). Side reactions that result in borazine formation were effectively suppressed if 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaborolidines 7 were employed as co‐monomers in combination with dichloro‐ or dibromoboranes 2 or 8, respectively. Silicon/boron exchange polycondensation led to oligo(iminoborane)s 11 a,b,ac,d. Alternative synthetic routes to such species involve Sn/B exchange of 1,3‐bis(trimethylstannyl)‐2‐n‐octyl‐1,3,2‐diazaborolidine (16) and n‐C8H17BBr2 (8 a), and the initiated polycondensation of the dormant monomer 14 in the presence of a Brønsted acid (HCl, HOTf, or HNTf2; Tf=trifluoromethylsulfonyl). Although an attempt to obtain an oligo‐/poly(iminoborane) with phenyl side groups yielded only insoluble material, the incorporation of aryl groups was proven for a derivative with both phenyl and n‐octyl boron substituents (11 ac), as well as for a derivative with 4‐n‐butylphenyl side groups (11 d). The highest‐molecular‐weight sample obtained was 11 ac. Featuring about 18 catenated BN units, on average, this is the closest approach to a poly(iminoborane) known.
Drawing a line under polymerization: Well‐defined oligo(iminoborane)s with up to 18 catenated BN units, on average, were prepared by Si/B or Sn/B exchange polycondensation and initiated polymerization of a dormant monomer (see scheme). The cyclolinear backbone imparts high stability and precludes the unwanted formation of borazine byproducts. The properties of the new materials are effectively tuned by variation of their side groups.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201705913</identifier><identifier>PMID: 29377367</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Boron ; Chemistry ; Macromolecules ; main group elements ; Monomers ; organic–inorganic hybrid materials ; polymers ; Side reactions ; synthesis design</subject><ispartof>Chemistry : a European journal, 2018-04, Vol.24 (22), p.5883-5894</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-f700304fde95c24576e8686ac6cdbddc54ff92813fe431711fae540012da45153</citedby><cites>FETCH-LOGICAL-c4103-f700304fde95c24576e8686ac6cdbddc54ff92813fe431711fae540012da45153</cites><orcidid>0000-0003-1273-3685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201705913$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201705913$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayhan, Ozan</creatorcontrib><creatorcontrib>Riensch, Nicolas A.</creatorcontrib><creatorcontrib>Glasmacher, Clemens</creatorcontrib><creatorcontrib>Helten, Holger</creatorcontrib><title>Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The reaction of n‐C8H17B[N(Me)SiMe3]2 (1) with n‐C8H17BCl2 (2 a) yielded, instead of a linear poly(iminoborane), the aminoborane n‐C8H17B(Cl)N(Me)SiMe3 (4) and after cyclotrimerization the borazine cyclo‐(n‐C8H17BNMe)3 (6). Side reactions that result in borazine formation were effectively suppressed if 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaborolidines 7 were employed as co‐monomers in combination with dichloro‐ or dibromoboranes 2 or 8, respectively. Silicon/boron exchange polycondensation led to oligo(iminoborane)s 11 a,b,ac,d. Alternative synthetic routes to such species involve Sn/B exchange of 1,3‐bis(trimethylstannyl)‐2‐n‐octyl‐1,3,2‐diazaborolidine (16) and n‐C8H17BBr2 (8 a), and the initiated polycondensation of the dormant monomer 14 in the presence of a Brønsted acid (HCl, HOTf, or HNTf2; Tf=trifluoromethylsulfonyl). Although an attempt to obtain an oligo‐/poly(iminoborane) with phenyl side groups yielded only insoluble material, the incorporation of aryl groups was proven for a derivative with both phenyl and n‐octyl boron substituents (11 ac), as well as for a derivative with 4‐n‐butylphenyl side groups (11 d). The highest‐molecular‐weight sample obtained was 11 ac. Featuring about 18 catenated BN units, on average, this is the closest approach to a poly(iminoborane) known.
Drawing a line under polymerization: Well‐defined oligo(iminoborane)s with up to 18 catenated BN units, on average, were prepared by Si/B or Sn/B exchange polycondensation and initiated polymerization of a dormant monomer (see scheme). The cyclolinear backbone imparts high stability and precludes the unwanted formation of borazine byproducts. The properties of the new materials are effectively tuned by variation of their side groups.</description><subject>Aromatic compounds</subject><subject>Boron</subject><subject>Chemistry</subject><subject>Macromolecules</subject><subject>main group elements</subject><subject>Monomers</subject><subject>organic–inorganic hybrid materials</subject><subject>polymers</subject><subject>Side reactions</subject><subject>synthesis design</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb9uFDEQhy0EIsdBS4lWognFHuP_Zzq0CkmkO4Ui1JbP6704eO3DzgptxyPwjDwJji4EiYbKGumbzzPzQ-g1hhUGIO_tjRtXBLAErjB9ghaYE9xSKfhTtADFZCs4VSfoRSm3AKAEpc_RCVFUSirkAh262YYUfHQmN1fB79OvHz8bE_vmcwrzqR99TLuUTXTvyofm-sY1W1-Kj_tm4-PXxsfmMqa8N9HbZmt8rN3nOU2HWticxhScnUJVd3VOX-7y_BI9G0wo7tXDu0RfPp1ddxft5ur8svu4aS3DQNtBAlBgQ-8Ut4RxKdxarIWxwva7vrecDYMia0wHxyiWGA_GcQaASW8Yx5wu0enRe8jp2-TKna7_WxdCXSVNRWOlKGAB9Q5L9PYf9DZNOdbpNAHCFWC6ZpVaHam6VynZDfqQ_WjyrDHo-yz0fRb6MYva8OZBO-1G1z_if45fAXUEvvvg5v_odHdxtv0r_w3XnJcy</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Ayhan, Ozan</creator><creator>Riensch, Nicolas A.</creator><creator>Glasmacher, Clemens</creator><creator>Helten, Holger</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1273-3685</orcidid></search><sort><creationdate>20180417</creationdate><title>Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry</title><author>Ayhan, Ozan ; Riensch, Nicolas A. ; Glasmacher, Clemens ; Helten, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-f700304fde95c24576e8686ac6cdbddc54ff92813fe431711fae540012da45153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aromatic compounds</topic><topic>Boron</topic><topic>Chemistry</topic><topic>Macromolecules</topic><topic>main group elements</topic><topic>Monomers</topic><topic>organic–inorganic hybrid materials</topic><topic>polymers</topic><topic>Side reactions</topic><topic>synthesis design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayhan, Ozan</creatorcontrib><creatorcontrib>Riensch, Nicolas A.</creatorcontrib><creatorcontrib>Glasmacher, Clemens</creatorcontrib><creatorcontrib>Helten, Holger</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayhan, Ozan</au><au>Riensch, Nicolas A.</au><au>Glasmacher, Clemens</au><au>Helten, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>24</volume><issue>22</issue><spage>5883</spage><epage>5894</epage><pages>5883-5894</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The reaction of n‐C8H17B[N(Me)SiMe3]2 (1) with n‐C8H17BCl2 (2 a) yielded, instead of a linear poly(iminoborane), the aminoborane n‐C8H17B(Cl)N(Me)SiMe3 (4) and after cyclotrimerization the borazine cyclo‐(n‐C8H17BNMe)3 (6). Side reactions that result in borazine formation were effectively suppressed if 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaborolidines 7 were employed as co‐monomers in combination with dichloro‐ or dibromoboranes 2 or 8, respectively. Silicon/boron exchange polycondensation led to oligo(iminoborane)s 11 a,b,ac,d. Alternative synthetic routes to such species involve Sn/B exchange of 1,3‐bis(trimethylstannyl)‐2‐n‐octyl‐1,3,2‐diazaborolidine (16) and n‐C8H17BBr2 (8 a), and the initiated polycondensation of the dormant monomer 14 in the presence of a Brønsted acid (HCl, HOTf, or HNTf2; Tf=trifluoromethylsulfonyl). Although an attempt to obtain an oligo‐/poly(iminoborane) with phenyl side groups yielded only insoluble material, the incorporation of aryl groups was proven for a derivative with both phenyl and n‐octyl boron substituents (11 ac), as well as for a derivative with 4‐n‐butylphenyl side groups (11 d). The highest‐molecular‐weight sample obtained was 11 ac. Featuring about 18 catenated BN units, on average, this is the closest approach to a poly(iminoborane) known.
Drawing a line under polymerization: Well‐defined oligo(iminoborane)s with up to 18 catenated BN units, on average, were prepared by Si/B or Sn/B exchange polycondensation and initiated polymerization of a dormant monomer (see scheme). The cyclolinear backbone imparts high stability and precludes the unwanted formation of borazine byproducts. The properties of the new materials are effectively tuned by variation of their side groups.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29377367</pmid><doi>10.1002/chem.201705913</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1273-3685</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2018-04, Vol.24 (22), p.5883-5894 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1993016077 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aromatic compounds Boron Chemistry Macromolecules main group elements Monomers organic–inorganic hybrid materials polymers Side reactions synthesis design |
title | Cyclolinear Oligo‐ and Poly(iminoborane)s: The Missing Link in Inorganic Main‐Group Macromolecular Chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclolinear%20Oligo%E2%80%90%20and%20Poly(iminoborane)s:%20The%20Missing%20Link%20in%20Inorganic%20Main%E2%80%90Group%20Macromolecular%20Chemistry&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ayhan,%20Ozan&rft.date=2018-04-17&rft.volume=24&rft.issue=22&rft.spage=5883&rft.epage=5894&rft.pages=5883-5894&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201705913&rft_dat=%3Cproquest_cross%3E2025901384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025901384&rft_id=info:pmid/29377367&rfr_iscdi=true |