Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information

Objective We investigated the potential of computer‐based models to decode diagnosis and lifetime consumption in alcohol dependence (AD) from grey‐matter pattern information. As machine‐learning approaches to psychiatric neuroimaging have recently come under scrutiny due to unclear generalization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta psychiatrica Scandinavica 2018-03, Vol.137 (3), p.252-262
Hauptverfasser: Guggenmos, M., Scheel, M., Sekutowicz, M., Garbusow, M., Sebold, M., Sommer, C., Charlet, K., Beck, A., Wittchen, H.‐U., Zimmermann, U. S., Smolka, M. N., Heinz, A., Sterzer, P., Schmack, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 3
container_start_page 252
container_title Acta psychiatrica Scandinavica
container_volume 137
creator Guggenmos, M.
Scheel, M.
Sekutowicz, M.
Garbusow, M.
Sebold, M.
Sommer, C.
Charlet, K.
Beck, A.
Wittchen, H.‐U.
Zimmermann, U. S.
Smolka, M. N.
Heinz, A.
Sterzer, P.
Schmack, K.
description Objective We investigated the potential of computer‐based models to decode diagnosis and lifetime consumption in alcohol dependence (AD) from grey‐matter pattern information. As machine‐learning approaches to psychiatric neuroimaging have recently come under scrutiny due to unclear generalization and the opacity of algorithms, our investigation aimed to address a number of methodological criticisms. Method Participants were adult individuals diagnosed with AD (N = 119) and substance‐naïve controls (N = 97) ages 20‐65 who underwent structural MRI. Machine‐learning models were applied to predict diagnosis and lifetime alcohol consumption. Results A classification scheme based on regional grey matter attained 74% diagnostic accuracy and predicted lifetime consumption with high accuracy (r = 0.56, P < 10−10). A key advantage of the classification scheme was its algorithmic transparency, revealing cingulate, insular and inferior frontal cortices as important brain areas underlying classification. Validation of the classification scheme on data of an independent trial was successful with nearly identical accuracy, addressing the concern of generalization. Finally, compared to a blinded radiologist, computer‐based classification showed higher accuracy and sensitivity, reduced age and gender biases, but lower specificity. Conclusion Computer‐based models applied to whole‐brain grey‐matter predicted diagnosis and lifetime consumption in AD with good accuracy. Computer‐based classification may be particularly suited as a screening tool with high sensitivity.
doi_str_mv 10.1111/acps.12848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993014553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993014553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-a0a3d8ea6c5cda9ef46e2b1e46b1a13f2ac8994fd0abb57a7706c313524afad3</originalsourceid><addsrcrecordid>eNp9kM1KHTEUx0Op6NW66QOUQDdFGJtM5nMpt36BoFAX3YUzyck1MpNMkxnk7nwEn9EnMddrXbhoNoccfufPOT9CvnJ2zNP7CWqMxzxviuYTWfCKsYwVRf2ZLBhjPKta9meP7Md4n74lZ80u2ctbUdesbBfk7hcqr61bUW1h5Xy0kYLTtLcGJzsgVd7FeRgn6x21jkKv_J3vqcYRnUankJrgB7oKuH5-fBpgmjDQ8bVsBowPqZeGv5AdA33Ew7d6QG7PTm-XF9nV9fnl8uQqU6KsmwwYCN0gVKpUGlo0RYV5x7GoOg5cmBxU07aF0Qy6rqwhnVEpwUWZF2BAiwPyYxs7Bv93xjjJwUaFfQ8O_Rwlb1vBeFGWIqHfP6D3fg4uLSfzJI6JBG6ooy2lgo8xoJFjsAOEteRMbvTLjX75qj_B394i525A_Y7-850AvgUebI_r_0TJk-XN723oC67PkuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001033013</pqid></control><display><type>article</type><title>Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information</title><source>Access via Wiley Online Library</source><creator>Guggenmos, M. ; Scheel, M. ; Sekutowicz, M. ; Garbusow, M. ; Sebold, M. ; Sommer, C. ; Charlet, K. ; Beck, A. ; Wittchen, H.‐U. ; Zimmermann, U. S. ; Smolka, M. N. ; Heinz, A. ; Sterzer, P. ; Schmack, K.</creator><creatorcontrib>Guggenmos, M. ; Scheel, M. ; Sekutowicz, M. ; Garbusow, M. ; Sebold, M. ; Sommer, C. ; Charlet, K. ; Beck, A. ; Wittchen, H.‐U. ; Zimmermann, U. S. ; Smolka, M. N. ; Heinz, A. ; Sterzer, P. ; Schmack, K.</creatorcontrib><description>Objective We investigated the potential of computer‐based models to decode diagnosis and lifetime consumption in alcohol dependence (AD) from grey‐matter pattern information. As machine‐learning approaches to psychiatric neuroimaging have recently come under scrutiny due to unclear generalization and the opacity of algorithms, our investigation aimed to address a number of methodological criticisms. Method Participants were adult individuals diagnosed with AD (N = 119) and substance‐naïve controls (N = 97) ages 20‐65 who underwent structural MRI. Machine‐learning models were applied to predict diagnosis and lifetime alcohol consumption. Results A classification scheme based on regional grey matter attained 74% diagnostic accuracy and predicted lifetime consumption with high accuracy (r = 0.56, P &lt; 10−10). A key advantage of the classification scheme was its algorithmic transparency, revealing cingulate, insular and inferior frontal cortices as important brain areas underlying classification. Validation of the classification scheme on data of an independent trial was successful with nearly identical accuracy, addressing the concern of generalization. Finally, compared to a blinded radiologist, computer‐based classification showed higher accuracy and sensitivity, reduced age and gender biases, but lower specificity. Conclusion Computer‐based models applied to whole‐brain grey‐matter predicted diagnosis and lifetime consumption in AD with good accuracy. Computer‐based classification may be particularly suited as a screening tool with high sensitivity.</description><identifier>ISSN: 0001-690X</identifier><identifier>EISSN: 1600-0447</identifier><identifier>DOI: 10.1111/acps.12848</identifier><identifier>PMID: 29377059</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accuracy ; alcohol drinking ; Alcoholism ; Classification ; Classification schemes ; Diagnosis ; Drug dependence ; grey matter ; Learning algorithms ; machine learning ; Magnetic resonance imaging ; Neuroimaging ; Psychiatry ; radiologists ; Substantia grisea</subject><ispartof>Acta psychiatrica Scandinavica, 2018-03, Vol.137 (3), p.252-262</ispartof><rights>2018 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>2018 John Wiley &amp; Sons A/S, Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-a0a3d8ea6c5cda9ef46e2b1e46b1a13f2ac8994fd0abb57a7706c313524afad3</citedby><cites>FETCH-LOGICAL-c3578-a0a3d8ea6c5cda9ef46e2b1e46b1a13f2ac8994fd0abb57a7706c313524afad3</cites><orcidid>0000-0002-0139-4123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Facps.12848$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Facps.12848$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29377059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guggenmos, M.</creatorcontrib><creatorcontrib>Scheel, M.</creatorcontrib><creatorcontrib>Sekutowicz, M.</creatorcontrib><creatorcontrib>Garbusow, M.</creatorcontrib><creatorcontrib>Sebold, M.</creatorcontrib><creatorcontrib>Sommer, C.</creatorcontrib><creatorcontrib>Charlet, K.</creatorcontrib><creatorcontrib>Beck, A.</creatorcontrib><creatorcontrib>Wittchen, H.‐U.</creatorcontrib><creatorcontrib>Zimmermann, U. S.</creatorcontrib><creatorcontrib>Smolka, M. N.</creatorcontrib><creatorcontrib>Heinz, A.</creatorcontrib><creatorcontrib>Sterzer, P.</creatorcontrib><creatorcontrib>Schmack, K.</creatorcontrib><title>Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information</title><title>Acta psychiatrica Scandinavica</title><addtitle>Acta Psychiatr Scand</addtitle><description>Objective We investigated the potential of computer‐based models to decode diagnosis and lifetime consumption in alcohol dependence (AD) from grey‐matter pattern information. As machine‐learning approaches to psychiatric neuroimaging have recently come under scrutiny due to unclear generalization and the opacity of algorithms, our investigation aimed to address a number of methodological criticisms. Method Participants were adult individuals diagnosed with AD (N = 119) and substance‐naïve controls (N = 97) ages 20‐65 who underwent structural MRI. Machine‐learning models were applied to predict diagnosis and lifetime alcohol consumption. Results A classification scheme based on regional grey matter attained 74% diagnostic accuracy and predicted lifetime consumption with high accuracy (r = 0.56, P &lt; 10−10). A key advantage of the classification scheme was its algorithmic transparency, revealing cingulate, insular and inferior frontal cortices as important brain areas underlying classification. Validation of the classification scheme on data of an independent trial was successful with nearly identical accuracy, addressing the concern of generalization. Finally, compared to a blinded radiologist, computer‐based classification showed higher accuracy and sensitivity, reduced age and gender biases, but lower specificity. Conclusion Computer‐based models applied to whole‐brain grey‐matter predicted diagnosis and lifetime consumption in AD with good accuracy. Computer‐based classification may be particularly suited as a screening tool with high sensitivity.</description><subject>Accuracy</subject><subject>alcohol drinking</subject><subject>Alcoholism</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Diagnosis</subject><subject>Drug dependence</subject><subject>grey matter</subject><subject>Learning algorithms</subject><subject>machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Neuroimaging</subject><subject>Psychiatry</subject><subject>radiologists</subject><subject>Substantia grisea</subject><issn>0001-690X</issn><issn>1600-0447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KHTEUx0Op6NW66QOUQDdFGJtM5nMpt36BoFAX3YUzyck1MpNMkxnk7nwEn9EnMddrXbhoNoccfufPOT9CvnJ2zNP7CWqMxzxviuYTWfCKsYwVRf2ZLBhjPKta9meP7Md4n74lZ80u2ctbUdesbBfk7hcqr61bUW1h5Xy0kYLTtLcGJzsgVd7FeRgn6x21jkKv_J3vqcYRnUankJrgB7oKuH5-fBpgmjDQ8bVsBowPqZeGv5AdA33Ew7d6QG7PTm-XF9nV9fnl8uQqU6KsmwwYCN0gVKpUGlo0RYV5x7GoOg5cmBxU07aF0Qy6rqwhnVEpwUWZF2BAiwPyYxs7Bv93xjjJwUaFfQ8O_Rwlb1vBeFGWIqHfP6D3fg4uLSfzJI6JBG6ooy2lgo8xoJFjsAOEteRMbvTLjX75qj_B394i525A_Y7-850AvgUebI_r_0TJk-XN723oC67PkuU</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Guggenmos, M.</creator><creator>Scheel, M.</creator><creator>Sekutowicz, M.</creator><creator>Garbusow, M.</creator><creator>Sebold, M.</creator><creator>Sommer, C.</creator><creator>Charlet, K.</creator><creator>Beck, A.</creator><creator>Wittchen, H.‐U.</creator><creator>Zimmermann, U. S.</creator><creator>Smolka, M. N.</creator><creator>Heinz, A.</creator><creator>Sterzer, P.</creator><creator>Schmack, K.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0139-4123</orcidid></search><sort><creationdate>201803</creationdate><title>Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information</title><author>Guggenmos, M. ; Scheel, M. ; Sekutowicz, M. ; Garbusow, M. ; Sebold, M. ; Sommer, C. ; Charlet, K. ; Beck, A. ; Wittchen, H.‐U. ; Zimmermann, U. S. ; Smolka, M. N. ; Heinz, A. ; Sterzer, P. ; Schmack, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-a0a3d8ea6c5cda9ef46e2b1e46b1a13f2ac8994fd0abb57a7706c313524afad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>alcohol drinking</topic><topic>Alcoholism</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Diagnosis</topic><topic>Drug dependence</topic><topic>grey matter</topic><topic>Learning algorithms</topic><topic>machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Neuroimaging</topic><topic>Psychiatry</topic><topic>radiologists</topic><topic>Substantia grisea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guggenmos, M.</creatorcontrib><creatorcontrib>Scheel, M.</creatorcontrib><creatorcontrib>Sekutowicz, M.</creatorcontrib><creatorcontrib>Garbusow, M.</creatorcontrib><creatorcontrib>Sebold, M.</creatorcontrib><creatorcontrib>Sommer, C.</creatorcontrib><creatorcontrib>Charlet, K.</creatorcontrib><creatorcontrib>Beck, A.</creatorcontrib><creatorcontrib>Wittchen, H.‐U.</creatorcontrib><creatorcontrib>Zimmermann, U. S.</creatorcontrib><creatorcontrib>Smolka, M. N.</creatorcontrib><creatorcontrib>Heinz, A.</creatorcontrib><creatorcontrib>Sterzer, P.</creatorcontrib><creatorcontrib>Schmack, K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Acta psychiatrica Scandinavica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guggenmos, M.</au><au>Scheel, M.</au><au>Sekutowicz, M.</au><au>Garbusow, M.</au><au>Sebold, M.</au><au>Sommer, C.</au><au>Charlet, K.</au><au>Beck, A.</au><au>Wittchen, H.‐U.</au><au>Zimmermann, U. S.</au><au>Smolka, M. N.</au><au>Heinz, A.</au><au>Sterzer, P.</au><au>Schmack, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information</atitle><jtitle>Acta psychiatrica Scandinavica</jtitle><addtitle>Acta Psychiatr Scand</addtitle><date>2018-03</date><risdate>2018</risdate><volume>137</volume><issue>3</issue><spage>252</spage><epage>262</epage><pages>252-262</pages><issn>0001-690X</issn><eissn>1600-0447</eissn><abstract>Objective We investigated the potential of computer‐based models to decode diagnosis and lifetime consumption in alcohol dependence (AD) from grey‐matter pattern information. As machine‐learning approaches to psychiatric neuroimaging have recently come under scrutiny due to unclear generalization and the opacity of algorithms, our investigation aimed to address a number of methodological criticisms. Method Participants were adult individuals diagnosed with AD (N = 119) and substance‐naïve controls (N = 97) ages 20‐65 who underwent structural MRI. Machine‐learning models were applied to predict diagnosis and lifetime alcohol consumption. Results A classification scheme based on regional grey matter attained 74% diagnostic accuracy and predicted lifetime consumption with high accuracy (r = 0.56, P &lt; 10−10). A key advantage of the classification scheme was its algorithmic transparency, revealing cingulate, insular and inferior frontal cortices as important brain areas underlying classification. Validation of the classification scheme on data of an independent trial was successful with nearly identical accuracy, addressing the concern of generalization. Finally, compared to a blinded radiologist, computer‐based classification showed higher accuracy and sensitivity, reduced age and gender biases, but lower specificity. Conclusion Computer‐based models applied to whole‐brain grey‐matter predicted diagnosis and lifetime consumption in AD with good accuracy. Computer‐based classification may be particularly suited as a screening tool with high sensitivity.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>29377059</pmid><doi>10.1111/acps.12848</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0139-4123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-690X
ispartof Acta psychiatrica Scandinavica, 2018-03, Vol.137 (3), p.252-262
issn 0001-690X
1600-0447
language eng
recordid cdi_proquest_miscellaneous_1993014553
source Access via Wiley Online Library
subjects Accuracy
alcohol drinking
Alcoholism
Classification
Classification schemes
Diagnosis
Drug dependence
grey matter
Learning algorithms
machine learning
Magnetic resonance imaging
Neuroimaging
Psychiatry
radiologists
Substantia grisea
title Decoding diagnosis and lifetime consumption in alcohol dependence from grey‐matter pattern information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20diagnosis%20and%20lifetime%20consumption%20in%20alcohol%20dependence%20from%20grey%E2%80%90matter%20pattern%20information&rft.jtitle=Acta%20psychiatrica%20Scandinavica&rft.au=Guggenmos,%20M.&rft.date=2018-03&rft.volume=137&rft.issue=3&rft.spage=252&rft.epage=262&rft.pages=252-262&rft.issn=0001-690X&rft.eissn=1600-0447&rft_id=info:doi/10.1111/acps.12848&rft_dat=%3Cproquest_cross%3E1993014553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001033013&rft_id=info:pmid/29377059&rfr_iscdi=true