Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification

Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. Whil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-03, Vol.90 (5), p.3132-3139
Hauptverfasser: Castiello, F. Rafael, Tabrizian, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3139
container_issue 5
container_start_page 3132
container_title Analytical chemistry (Washington)
container_volume 90
creator Castiello, F. Rafael
Tabrizian, Maryam
description Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.
doi_str_mv 10.1021/acs.analchem.7b04288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993014371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993014371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhHyBkiQuXLOOPOMmRVpRdqYi2wNmaZCclVWIvnkSCf19Xu-2BAwdrJM_zvpb8CPFWwVqBVh-x4zUGHLtfNK2rFqyu62dipUoNhatr_VysAMAUugI4Ea-Y7wCUAuVeihPdmKpW2q1E_LqM87Af6Y_8vqQeO5JXI_IUg7whjgFDvtlOeDuE2-IMmXbybIhMgWOSfT6bZcIgrzKXCOehk1seaWa5iSmXEMvrBcM89EOXtzG8Fi96HJneHOep-Hnx-cf5prj89mV7_umyQFO5uehKA9Y1tjXKgrFNY501yrm6BXBYKQd9SeTqxkDTVa5yetfiriydRVS9IXMqPhx69yn-XohnPw3c0ThioLiwV02OKmsqldH3_6B3cUn5Z9lr0MaCLlWTKXuguhSZE_V-n4YJ01-vwD8I8VmIfxTij0Jy7N2xfGkn2j2FHg1kAA7AQ_zp4f923gNxJJmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023402519</pqid></control><display><type>article</type><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><source>ACS Publications</source><creator>Castiello, F. Rafael ; Tabrizian, Maryam</creator><creatorcontrib>Castiello, F. Rafael ; Tabrizian, Maryam</creatorcontrib><description>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b04288</identifier><identifier>PMID: 29378126</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antifouling ; Antifouling substances ; Biosensors ; Chemical compounds ; Chemistry ; Diabetes ; Diabetes mellitus ; Glucagon ; Glucose ; Hormones ; Imaging ; Insulin ; Insulin secretion ; Islets of Langerhans ; Medical research ; Multiplexing ; Organs ; Pancreas ; Paracrine signalling ; Pharmacology ; Resonance ; Secretion ; Secretome ; Self-assembly ; Somatostatin ; Surface plasmon resonance</subject><ispartof>Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3132-3139</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</citedby><cites>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</cites><orcidid>0000-0002-5050-4480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b04288$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b04288$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29378126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castiello, F. Rafael</creatorcontrib><creatorcontrib>Tabrizian, Maryam</creatorcontrib><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</description><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Biosensors</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Glucagon</subject><subject>Glucose</subject><subject>Hormones</subject><subject>Imaging</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Islets of Langerhans</subject><subject>Medical research</subject><subject>Multiplexing</subject><subject>Organs</subject><subject>Pancreas</subject><subject>Paracrine signalling</subject><subject>Pharmacology</subject><subject>Resonance</subject><subject>Secretion</subject><subject>Secretome</subject><subject>Self-assembly</subject><subject>Somatostatin</subject><subject>Surface plasmon resonance</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhHyBkiQuXLOOPOMmRVpRdqYi2wNmaZCclVWIvnkSCf19Xu-2BAwdrJM_zvpb8CPFWwVqBVh-x4zUGHLtfNK2rFqyu62dipUoNhatr_VysAMAUugI4Ea-Y7wCUAuVeihPdmKpW2q1E_LqM87Af6Y_8vqQeO5JXI_IUg7whjgFDvtlOeDuE2-IMmXbybIhMgWOSfT6bZcIgrzKXCOehk1seaWa5iSmXEMvrBcM89EOXtzG8Fi96HJneHOep-Hnx-cf5prj89mV7_umyQFO5uehKA9Y1tjXKgrFNY501yrm6BXBYKQd9SeTqxkDTVa5yetfiriydRVS9IXMqPhx69yn-XohnPw3c0ThioLiwV02OKmsqldH3_6B3cUn5Z9lr0MaCLlWTKXuguhSZE_V-n4YJ01-vwD8I8VmIfxTij0Jy7N2xfGkn2j2FHg1kAA7AQ_zp4f923gNxJJmM</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Castiello, F. Rafael</creator><creator>Tabrizian, Maryam</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5050-4480</orcidid></search><sort><creationdate>20180306</creationdate><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><author>Castiello, F. Rafael ; Tabrizian, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Biosensors</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Glucagon</topic><topic>Glucose</topic><topic>Hormones</topic><topic>Imaging</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Islets of Langerhans</topic><topic>Medical research</topic><topic>Multiplexing</topic><topic>Organs</topic><topic>Pancreas</topic><topic>Paracrine signalling</topic><topic>Pharmacology</topic><topic>Resonance</topic><topic>Secretion</topic><topic>Secretome</topic><topic>Self-assembly</topic><topic>Somatostatin</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castiello, F. Rafael</creatorcontrib><creatorcontrib>Tabrizian, Maryam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castiello, F. Rafael</au><au>Tabrizian, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-03-06</date><risdate>2018</risdate><volume>90</volume><issue>5</issue><spage>3132</spage><epage>3139</epage><pages>3132-3139</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29378126</pmid><doi>10.1021/acs.analchem.7b04288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5050-4480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3132-3139
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1993014371
source ACS Publications
subjects Antifouling
Antifouling substances
Biosensors
Chemical compounds
Chemistry
Diabetes
Diabetes mellitus
Glucagon
Glucose
Hormones
Imaging
Insulin
Insulin secretion
Islets of Langerhans
Medical research
Multiplexing
Organs
Pancreas
Paracrine signalling
Pharmacology
Resonance
Secretion
Secretome
Self-assembly
Somatostatin
Surface plasmon resonance
title Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplex%20Surface%20Plasmon%20Resonance%20Imaging-Based%20Biosensor%20for%20Human%20Pancreatic%20Islets%20Hormones%20Quantification&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Castiello,%20F.%20Rafael&rft.date=2018-03-06&rft.volume=90&rft.issue=5&rft.spage=3132&rft.epage=3139&rft.pages=3132-3139&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b04288&rft_dat=%3Cproquest_cross%3E1993014371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023402519&rft_id=info:pmid/29378126&rfr_iscdi=true