Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification
Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. Whil...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-03, Vol.90 (5), p.3132-3139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3139 |
---|---|
container_issue | 5 |
container_start_page | 3132 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Castiello, F. Rafael Tabrizian, Maryam |
description | Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes. |
doi_str_mv | 10.1021/acs.analchem.7b04288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993014371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993014371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhHyBkiQuXLOOPOMmRVpRdqYi2wNmaZCclVWIvnkSCf19Xu-2BAwdrJM_zvpb8CPFWwVqBVh-x4zUGHLtfNK2rFqyu62dipUoNhatr_VysAMAUugI4Ea-Y7wCUAuVeihPdmKpW2q1E_LqM87Af6Y_8vqQeO5JXI_IUg7whjgFDvtlOeDuE2-IMmXbybIhMgWOSfT6bZcIgrzKXCOehk1seaWa5iSmXEMvrBcM89EOXtzG8Fi96HJneHOep-Hnx-cf5prj89mV7_umyQFO5uehKA9Y1tjXKgrFNY501yrm6BXBYKQd9SeTqxkDTVa5yetfiriydRVS9IXMqPhx69yn-XohnPw3c0ThioLiwV02OKmsqldH3_6B3cUn5Z9lr0MaCLlWTKXuguhSZE_V-n4YJ01-vwD8I8VmIfxTij0Jy7N2xfGkn2j2FHg1kAA7AQ_zp4f923gNxJJmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023402519</pqid></control><display><type>article</type><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><source>ACS Publications</source><creator>Castiello, F. Rafael ; Tabrizian, Maryam</creator><creatorcontrib>Castiello, F. Rafael ; Tabrizian, Maryam</creatorcontrib><description>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b04288</identifier><identifier>PMID: 29378126</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antifouling ; Antifouling substances ; Biosensors ; Chemical compounds ; Chemistry ; Diabetes ; Diabetes mellitus ; Glucagon ; Glucose ; Hormones ; Imaging ; Insulin ; Insulin secretion ; Islets of Langerhans ; Medical research ; Multiplexing ; Organs ; Pancreas ; Paracrine signalling ; Pharmacology ; Resonance ; Secretion ; Secretome ; Self-assembly ; Somatostatin ; Surface plasmon resonance</subject><ispartof>Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3132-3139</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 6, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</citedby><cites>FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</cites><orcidid>0000-0002-5050-4480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b04288$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b04288$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29378126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castiello, F. Rafael</creatorcontrib><creatorcontrib>Tabrizian, Maryam</creatorcontrib><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</description><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Biosensors</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Glucagon</subject><subject>Glucose</subject><subject>Hormones</subject><subject>Imaging</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Islets of Langerhans</subject><subject>Medical research</subject><subject>Multiplexing</subject><subject>Organs</subject><subject>Pancreas</subject><subject>Paracrine signalling</subject><subject>Pharmacology</subject><subject>Resonance</subject><subject>Secretion</subject><subject>Secretome</subject><subject>Self-assembly</subject><subject>Somatostatin</subject><subject>Surface plasmon resonance</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhHyBkiQuXLOOPOMmRVpRdqYi2wNmaZCclVWIvnkSCf19Xu-2BAwdrJM_zvpb8CPFWwVqBVh-x4zUGHLtfNK2rFqyu62dipUoNhatr_VysAMAUugI4Ea-Y7wCUAuVeihPdmKpW2q1E_LqM87Af6Y_8vqQeO5JXI_IUg7whjgFDvtlOeDuE2-IMmXbybIhMgWOSfT6bZcIgrzKXCOehk1seaWa5iSmXEMvrBcM89EOXtzG8Fi96HJneHOep-Hnx-cf5prj89mV7_umyQFO5uehKA9Y1tjXKgrFNY501yrm6BXBYKQd9SeTqxkDTVa5yetfiriydRVS9IXMqPhx69yn-XohnPw3c0ThioLiwV02OKmsqldH3_6B3cUn5Z9lr0MaCLlWTKXuguhSZE_V-n4YJ01-vwD8I8VmIfxTij0Jy7N2xfGkn2j2FHg1kAA7AQ_zp4f923gNxJJmM</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Castiello, F. Rafael</creator><creator>Tabrizian, Maryam</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5050-4480</orcidid></search><sort><creationdate>20180306</creationdate><title>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</title><author>Castiello, F. Rafael ; Tabrizian, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-c5304694b3140349946431668b006a7160f5ee689309c76762dbad5564aa1f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Biosensors</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Glucagon</topic><topic>Glucose</topic><topic>Hormones</topic><topic>Imaging</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Islets of Langerhans</topic><topic>Medical research</topic><topic>Multiplexing</topic><topic>Organs</topic><topic>Pancreas</topic><topic>Paracrine signalling</topic><topic>Pharmacology</topic><topic>Resonance</topic><topic>Secretion</topic><topic>Secretome</topic><topic>Self-assembly</topic><topic>Somatostatin</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castiello, F. Rafael</creatorcontrib><creatorcontrib>Tabrizian, Maryam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castiello, F. Rafael</au><au>Tabrizian, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-03-06</date><risdate>2018</risdate><volume>90</volume><issue>5</issue><spage>3132</spage><epage>3139</epage><pages>3132-3139</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Diabetes arises from secretory defects in vascularized micro-organs known as the islets of Langerhans. Recent studies indicated that furthering our understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion could represent a novel therapeutic avenue for diabetes. While many research groups are interested in insulin and glucagon secretion, few are particularly focused on studying the paracrine interaction in islets’ cells, and none on monitoring a secretory fingerprint that contemplates more than two hormones. Surface plasmon resonance imaging can achieve high-throughput and multiplexed biomolecule quantification, making it an ideal candidate for detection of multiple islet’s secretion products if arrays of hormones can be properly implemented on the sensing surface. In this study, we introduced a multiplex surface plasmon resonance imaging-based biosensor for simultaneous quantification of insulin, glucagon, and somatostatin. Performing this multiplex biosensing of hormones was mainly the result of the design of an antifouling sensing surface comprised by a mixed self-assembly monolayer of CH3O-PEG-SH and 16-mercaptohexadecanoic acid, which allowed it to operate in a complex matrix such as an islet secretome. The limit of detection in multiplex mode was 1 nM for insulin, 4 nM for glucagon, and 246 nM for somatostatin with a total analysis time of 21 min per point, making our approach the first reporting a label-free and multiplex measurement of such a combination of human hormones. This biosensor holds the promise of providing us with a mean for the further understanding of the paracrine effect of somatostatin on glucose-induced insulin secretion and consequently help develop novel therapeutic agents for diabetes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29378126</pmid><doi>10.1021/acs.analchem.7b04288</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5050-4480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3132-3139 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1993014371 |
source | ACS Publications |
subjects | Antifouling Antifouling substances Biosensors Chemical compounds Chemistry Diabetes Diabetes mellitus Glucagon Glucose Hormones Imaging Insulin Insulin secretion Islets of Langerhans Medical research Multiplexing Organs Pancreas Paracrine signalling Pharmacology Resonance Secretion Secretome Self-assembly Somatostatin Surface plasmon resonance |
title | Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplex%20Surface%20Plasmon%20Resonance%20Imaging-Based%20Biosensor%20for%20Human%20Pancreatic%20Islets%20Hormones%20Quantification&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Castiello,%20F.%20Rafael&rft.date=2018-03-06&rft.volume=90&rft.issue=5&rft.spage=3132&rft.epage=3139&rft.pages=3132-3139&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b04288&rft_dat=%3Cproquest_cross%3E1993014371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023402519&rft_id=info:pmid/29378126&rfr_iscdi=true |