Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2018-06, Vol.223 (5), p.2143-2156
Hauptverfasser: Takács, Szabolcs, Bardóczi, Zsuzsanna, Skrapits, Katalin, Göcz, Balázs, Váczi, Viktória, Maglóczky, Zsófia, Szűcs, Iván, Rácz, Gergely, Matolcsy, András, Dhillo, Waljit S., Watanabe, Masahiko, Kádár, Andrea, Fekete, Csaba, Kalló, Imre, Hrabovszky, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2156
container_issue 5
container_start_page 2143
container_title Brain Structure and Function
container_volume 223
creator Takács, Szabolcs
Bardóczi, Zsuzsanna
Skrapits, Katalin
Göcz, Balázs
Váczi, Viktória
Maglóczky, Zsófia
Szűcs, Iván
Rácz, Gergely
Matolcsy, András
Dhillo, Waljit S.
Watanabe, Masahiko
Kádár, Andrea
Fekete, Csaba
Kalló, Imre
Hrabovszky, Erik
description Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.
doi_str_mv 10.1007/s00429-018-1610-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993010118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993520247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</originalsourceid><addsrcrecordid>eNp1kUtvFiEUhonR2Fr9AW4MiRs3o1yGuSxNvTVp0i50TYDv0I86wMhF06X_XKZfbYxJVxzCc94DPAi9pOQtJWR8lwnp2dwROnV0oKSbHqFjOg28Y8NAH9_Xgh-hZzlfEyLmic5P0RGb-UQoo8fo92XMBfuYCnicXbhaoDOwLHhRGpa2x79c2eMP7gyrsMPO-xoiLGBKigF7Z1LMJq43uIaf4BZc9oCtC4BzSdWUmgBHi7-7nFdYiws4QG2dGbdyX70K-Tl6YtWS4cXdeoK-ffr49fRLd37x-ez0_Xln-MhKp4Rhu6HXymouhNZWCDExGGZlGRn1rAlhYGDYGWUpZ8KQfhacjWKwFED3_AS9OeSuKf6okIv0Lm9PVQFizZLOMyeUUDo19PV_6HWsKbTb3VKCEdaPjaIHavuDnMDKNTmv0o2kRG5-5MGPbH7k5kduya_ukqv2sLvv-CukAewA5HYUriD9M_rB1D-lQJ0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993520247</pqid></control><display><type>article</type><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</creator><creatorcontrib>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</creatorcontrib><description>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-018-1610-8</identifier><identifier>PMID: 29380121</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Aged, 80 and over ; Anatomy ; Autopsy ; Axons ; Axons - metabolism ; Axons - ultrastructure ; Biomedical and Life Sciences ; Biomedicine ; Carbocyanines - metabolism ; Cell Biology ; Cell Body - ultrastructure ; Dendrites - metabolism ; Dendrites - ultrastructure ; Dendritic spines ; gamma-Aminobutyric Acid - metabolism ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Glutamic acid transporter ; Gonadotropin-releasing hormone ; Gonadotropins ; Humans ; Hypothalamus ; Hypothalamus - cytology ; Imaging, Three-Dimensional ; Immunoelectron microscopy ; Innervation ; Isoforms ; Kiss1 protein ; Kisspeptins - metabolism ; Kisspeptins - ultrastructure ; Lipophilic ; Lysine - analogs &amp; derivatives ; Lysine - metabolism ; Male ; Microscopy ; Microscopy, Confocal ; Microscopy, Immunoelectron ; Middle Aged ; Nerve Net - metabolism ; Nerve Net - ultrastructure ; Neurology ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Neurotransmission ; Original Article ; Perfusion ; Pituitary (anterior) ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic vesicles ; Ultrastructure ; Vesicular Glutamate Transport Protein 2 - metabolism ; Vesicular Glutamate Transport Protein 2 - ultrastructure ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</subject><ispartof>Brain Structure and Function, 2018-06, Vol.223 (5), p.2143-2156</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Brain Structure and Function is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</citedby><cites>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-018-1610-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-018-1610-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29380121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takács, Szabolcs</creatorcontrib><creatorcontrib>Bardóczi, Zsuzsanna</creatorcontrib><creatorcontrib>Skrapits, Katalin</creatorcontrib><creatorcontrib>Göcz, Balázs</creatorcontrib><creatorcontrib>Váczi, Viktória</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Szűcs, Iván</creatorcontrib><creatorcontrib>Rácz, Gergely</creatorcontrib><creatorcontrib>Matolcsy, András</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Kádár, Andrea</creatorcontrib><creatorcontrib>Fekete, Csaba</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Hrabovszky, Erik</creatorcontrib><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anatomy</subject><subject>Autopsy</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbocyanines - metabolism</subject><subject>Cell Biology</subject><subject>Cell Body - ultrastructure</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Dendritic spines</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic acid transporter</subject><subject>Gonadotropin-releasing hormone</subject><subject>Gonadotropins</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Imaging, Three-Dimensional</subject><subject>Immunoelectron microscopy</subject><subject>Innervation</subject><subject>Isoforms</subject><subject>Kiss1 protein</subject><subject>Kisspeptins - metabolism</subject><subject>Kisspeptins - ultrastructure</subject><subject>Lipophilic</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Immunoelectron</subject><subject>Middle Aged</subject><subject>Nerve Net - metabolism</subject><subject>Nerve Net - ultrastructure</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Original Article</subject><subject>Perfusion</subject><subject>Pituitary (anterior)</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic vesicles</subject><subject>Ultrastructure</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - ultrastructure</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtvFiEUhonR2Fr9AW4MiRs3o1yGuSxNvTVp0i50TYDv0I86wMhF06X_XKZfbYxJVxzCc94DPAi9pOQtJWR8lwnp2dwROnV0oKSbHqFjOg28Y8NAH9_Xgh-hZzlfEyLmic5P0RGb-UQoo8fo92XMBfuYCnicXbhaoDOwLHhRGpa2x79c2eMP7gyrsMPO-xoiLGBKigF7Z1LMJq43uIaf4BZc9oCtC4BzSdWUmgBHi7-7nFdYiws4QG2dGbdyX70K-Tl6YtWS4cXdeoK-ffr49fRLd37x-ez0_Xln-MhKp4Rhu6HXymouhNZWCDExGGZlGRn1rAlhYGDYGWUpZ8KQfhacjWKwFED3_AS9OeSuKf6okIv0Lm9PVQFizZLOMyeUUDo19PV_6HWsKbTb3VKCEdaPjaIHavuDnMDKNTmv0o2kRG5-5MGPbH7k5kduya_ukqv2sLvv-CukAewA5HYUriD9M_rB1D-lQJ0v</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Takács, Szabolcs</creator><creator>Bardóczi, Zsuzsanna</creator><creator>Skrapits, Katalin</creator><creator>Göcz, Balázs</creator><creator>Váczi, Viktória</creator><creator>Maglóczky, Zsófia</creator><creator>Szűcs, Iván</creator><creator>Rácz, Gergely</creator><creator>Matolcsy, András</creator><creator>Dhillo, Waljit S.</creator><creator>Watanabe, Masahiko</creator><creator>Kádár, Andrea</creator><creator>Fekete, Csaba</creator><creator>Kalló, Imre</creator><creator>Hrabovszky, Erik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><author>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anatomy</topic><topic>Autopsy</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbocyanines - metabolism</topic><topic>Cell Biology</topic><topic>Cell Body - ultrastructure</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Dendritic spines</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic acid transporter</topic><topic>Gonadotropin-releasing hormone</topic><topic>Gonadotropins</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Imaging, Three-Dimensional</topic><topic>Immunoelectron microscopy</topic><topic>Innervation</topic><topic>Isoforms</topic><topic>Kiss1 protein</topic><topic>Kisspeptins - metabolism</topic><topic>Kisspeptins - ultrastructure</topic><topic>Lipophilic</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Immunoelectron</topic><topic>Middle Aged</topic><topic>Nerve Net - metabolism</topic><topic>Nerve Net - ultrastructure</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Original Article</topic><topic>Perfusion</topic><topic>Pituitary (anterior)</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic vesicles</topic><topic>Ultrastructure</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - ultrastructure</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takács, Szabolcs</creatorcontrib><creatorcontrib>Bardóczi, Zsuzsanna</creatorcontrib><creatorcontrib>Skrapits, Katalin</creatorcontrib><creatorcontrib>Göcz, Balázs</creatorcontrib><creatorcontrib>Váczi, Viktória</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Szűcs, Iván</creatorcontrib><creatorcontrib>Rácz, Gergely</creatorcontrib><creatorcontrib>Matolcsy, András</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Kádár, Andrea</creatorcontrib><creatorcontrib>Fekete, Csaba</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Hrabovszky, Erik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takács, Szabolcs</au><au>Bardóczi, Zsuzsanna</au><au>Skrapits, Katalin</au><au>Göcz, Balázs</au><au>Váczi, Viktória</au><au>Maglóczky, Zsófia</au><au>Szűcs, Iván</au><au>Rácz, Gergely</au><au>Matolcsy, András</au><au>Dhillo, Waljit S.</au><au>Watanabe, Masahiko</au><au>Kádár, Andrea</au><au>Fekete, Csaba</au><au>Kalló, Imre</au><au>Hrabovszky, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>223</volume><issue>5</issue><spage>2143</spage><epage>2156</epage><pages>2143-2156</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29380121</pmid><doi>10.1007/s00429-018-1610-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2018-06, Vol.223 (5), p.2143-2156
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_proquest_miscellaneous_1993010118
source MEDLINE; SpringerNature Journals
subjects Aged
Aged, 80 and over
Anatomy
Autopsy
Axons
Axons - metabolism
Axons - ultrastructure
Biomedical and Life Sciences
Biomedicine
Carbocyanines - metabolism
Cell Biology
Cell Body - ultrastructure
Dendrites - metabolism
Dendrites - ultrastructure
Dendritic spines
gamma-Aminobutyric Acid - metabolism
Glutamatergic transmission
Glutamic Acid - metabolism
Glutamic acid transporter
Gonadotropin-releasing hormone
Gonadotropins
Humans
Hypothalamus
Hypothalamus - cytology
Imaging, Three-Dimensional
Immunoelectron microscopy
Innervation
Isoforms
Kiss1 protein
Kisspeptins - metabolism
Kisspeptins - ultrastructure
Lipophilic
Lysine - analogs & derivatives
Lysine - metabolism
Male
Microscopy
Microscopy, Confocal
Microscopy, Immunoelectron
Middle Aged
Nerve Net - metabolism
Nerve Net - ultrastructure
Neurology
Neurons
Neurons - cytology
Neurons - metabolism
Neurosciences
Neurotransmission
Original Article
Perfusion
Pituitary (anterior)
Synapses - metabolism
Synapses - ultrastructure
Synaptic vesicles
Ultrastructure
Vesicular Glutamate Transport Protein 2 - metabolism
Vesicular Glutamate Transport Protein 2 - ultrastructure
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure
title Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%20mortem%20single-cell%20labeling%20with%20DiI%20and%20immunoelectron%20microscopy%20unveil%20the%20fine%20structure%20of%20kisspeptin%20neurons%20in%20humans&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Tak%C3%A1cs,%20Szabolcs&rft.date=2018-06-01&rft.volume=223&rft.issue=5&rft.spage=2143&rft.epage=2156&rft.pages=2143-2156&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-018-1610-8&rft_dat=%3Cproquest_cross%3E1993520247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993520247&rft_id=info:pmid/29380121&rfr_iscdi=true