Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans
Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analys...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2018-06, Vol.223 (5), p.2143-2156 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2156 |
---|---|
container_issue | 5 |
container_start_page | 2143 |
container_title | Brain Structure and Function |
container_volume | 223 |
creator | Takács, Szabolcs Bardóczi, Zsuzsanna Skrapits, Katalin Göcz, Balázs Váczi, Viktória Maglóczky, Zsófia Szűcs, Iván Rácz, Gergely Matolcsy, András Dhillo, Waljit S. Watanabe, Masahiko Kádár, Andrea Fekete, Csaba Kalló, Imre Hrabovszky, Erik |
description | Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of
post mortem
tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly
post mortem
allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans. |
doi_str_mv | 10.1007/s00429-018-1610-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993010118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993520247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</originalsourceid><addsrcrecordid>eNp1kUtvFiEUhonR2Fr9AW4MiRs3o1yGuSxNvTVp0i50TYDv0I86wMhF06X_XKZfbYxJVxzCc94DPAi9pOQtJWR8lwnp2dwROnV0oKSbHqFjOg28Y8NAH9_Xgh-hZzlfEyLmic5P0RGb-UQoo8fo92XMBfuYCnicXbhaoDOwLHhRGpa2x79c2eMP7gyrsMPO-xoiLGBKigF7Z1LMJq43uIaf4BZc9oCtC4BzSdWUmgBHi7-7nFdYiws4QG2dGbdyX70K-Tl6YtWS4cXdeoK-ffr49fRLd37x-ez0_Xln-MhKp4Rhu6HXymouhNZWCDExGGZlGRn1rAlhYGDYGWUpZ8KQfhacjWKwFED3_AS9OeSuKf6okIv0Lm9PVQFizZLOMyeUUDo19PV_6HWsKbTb3VKCEdaPjaIHavuDnMDKNTmv0o2kRG5-5MGPbH7k5kduya_ukqv2sLvv-CukAewA5HYUriD9M_rB1D-lQJ0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993520247</pqid></control><display><type>article</type><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</creator><creatorcontrib>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</creatorcontrib><description>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of
post mortem
tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly
post mortem
allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-018-1610-8</identifier><identifier>PMID: 29380121</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Aged, 80 and over ; Anatomy ; Autopsy ; Axons ; Axons - metabolism ; Axons - ultrastructure ; Biomedical and Life Sciences ; Biomedicine ; Carbocyanines - metabolism ; Cell Biology ; Cell Body - ultrastructure ; Dendrites - metabolism ; Dendrites - ultrastructure ; Dendritic spines ; gamma-Aminobutyric Acid - metabolism ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Glutamic acid transporter ; Gonadotropin-releasing hormone ; Gonadotropins ; Humans ; Hypothalamus ; Hypothalamus - cytology ; Imaging, Three-Dimensional ; Immunoelectron microscopy ; Innervation ; Isoforms ; Kiss1 protein ; Kisspeptins - metabolism ; Kisspeptins - ultrastructure ; Lipophilic ; Lysine - analogs & derivatives ; Lysine - metabolism ; Male ; Microscopy ; Microscopy, Confocal ; Microscopy, Immunoelectron ; Middle Aged ; Nerve Net - metabolism ; Nerve Net - ultrastructure ; Neurology ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Neurotransmission ; Original Article ; Perfusion ; Pituitary (anterior) ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic vesicles ; Ultrastructure ; Vesicular Glutamate Transport Protein 2 - metabolism ; Vesicular Glutamate Transport Protein 2 - ultrastructure ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</subject><ispartof>Brain Structure and Function, 2018-06, Vol.223 (5), p.2143-2156</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Brain Structure and Function is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</citedby><cites>FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-018-1610-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-018-1610-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29380121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takács, Szabolcs</creatorcontrib><creatorcontrib>Bardóczi, Zsuzsanna</creatorcontrib><creatorcontrib>Skrapits, Katalin</creatorcontrib><creatorcontrib>Göcz, Balázs</creatorcontrib><creatorcontrib>Váczi, Viktória</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Szűcs, Iván</creatorcontrib><creatorcontrib>Rácz, Gergely</creatorcontrib><creatorcontrib>Matolcsy, András</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Kádár, Andrea</creatorcontrib><creatorcontrib>Fekete, Csaba</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Hrabovszky, Erik</creatorcontrib><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of
post mortem
tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly
post mortem
allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anatomy</subject><subject>Autopsy</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbocyanines - metabolism</subject><subject>Cell Biology</subject><subject>Cell Body - ultrastructure</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Dendritic spines</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic acid transporter</subject><subject>Gonadotropin-releasing hormone</subject><subject>Gonadotropins</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Imaging, Three-Dimensional</subject><subject>Immunoelectron microscopy</subject><subject>Innervation</subject><subject>Isoforms</subject><subject>Kiss1 protein</subject><subject>Kisspeptins - metabolism</subject><subject>Kisspeptins - ultrastructure</subject><subject>Lipophilic</subject><subject>Lysine - analogs & derivatives</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Immunoelectron</subject><subject>Middle Aged</subject><subject>Nerve Net - metabolism</subject><subject>Nerve Net - ultrastructure</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Original Article</subject><subject>Perfusion</subject><subject>Pituitary (anterior)</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic vesicles</subject><subject>Ultrastructure</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - ultrastructure</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtvFiEUhonR2Fr9AW4MiRs3o1yGuSxNvTVp0i50TYDv0I86wMhF06X_XKZfbYxJVxzCc94DPAi9pOQtJWR8lwnp2dwROnV0oKSbHqFjOg28Y8NAH9_Xgh-hZzlfEyLmic5P0RGb-UQoo8fo92XMBfuYCnicXbhaoDOwLHhRGpa2x79c2eMP7gyrsMPO-xoiLGBKigF7Z1LMJq43uIaf4BZc9oCtC4BzSdWUmgBHi7-7nFdYiws4QG2dGbdyX70K-Tl6YtWS4cXdeoK-ffr49fRLd37x-ez0_Xln-MhKp4Rhu6HXymouhNZWCDExGGZlGRn1rAlhYGDYGWUpZ8KQfhacjWKwFED3_AS9OeSuKf6okIv0Lm9PVQFizZLOMyeUUDo19PV_6HWsKbTb3VKCEdaPjaIHavuDnMDKNTmv0o2kRG5-5MGPbH7k5kduya_ukqv2sLvv-CukAewA5HYUriD9M_rB1D-lQJ0v</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Takács, Szabolcs</creator><creator>Bardóczi, Zsuzsanna</creator><creator>Skrapits, Katalin</creator><creator>Göcz, Balázs</creator><creator>Váczi, Viktória</creator><creator>Maglóczky, Zsófia</creator><creator>Szűcs, Iván</creator><creator>Rácz, Gergely</creator><creator>Matolcsy, András</creator><creator>Dhillo, Waljit S.</creator><creator>Watanabe, Masahiko</creator><creator>Kádár, Andrea</creator><creator>Fekete, Csaba</creator><creator>Kalló, Imre</creator><creator>Hrabovszky, Erik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</title><author>Takács, Szabolcs ; Bardóczi, Zsuzsanna ; Skrapits, Katalin ; Göcz, Balázs ; Váczi, Viktória ; Maglóczky, Zsófia ; Szűcs, Iván ; Rácz, Gergely ; Matolcsy, András ; Dhillo, Waljit S. ; Watanabe, Masahiko ; Kádár, Andrea ; Fekete, Csaba ; Kalló, Imre ; Hrabovszky, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a5c2d64bafb355bbf55582e69af207b9b002ece6dcaf1325c049532756f1eeb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anatomy</topic><topic>Autopsy</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbocyanines - metabolism</topic><topic>Cell Biology</topic><topic>Cell Body - ultrastructure</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Dendritic spines</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic acid transporter</topic><topic>Gonadotropin-releasing hormone</topic><topic>Gonadotropins</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Imaging, Three-Dimensional</topic><topic>Immunoelectron microscopy</topic><topic>Innervation</topic><topic>Isoforms</topic><topic>Kiss1 protein</topic><topic>Kisspeptins - metabolism</topic><topic>Kisspeptins - ultrastructure</topic><topic>Lipophilic</topic><topic>Lysine - analogs & derivatives</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Immunoelectron</topic><topic>Middle Aged</topic><topic>Nerve Net - metabolism</topic><topic>Nerve Net - ultrastructure</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Original Article</topic><topic>Perfusion</topic><topic>Pituitary (anterior)</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic vesicles</topic><topic>Ultrastructure</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - ultrastructure</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takács, Szabolcs</creatorcontrib><creatorcontrib>Bardóczi, Zsuzsanna</creatorcontrib><creatorcontrib>Skrapits, Katalin</creatorcontrib><creatorcontrib>Göcz, Balázs</creatorcontrib><creatorcontrib>Váczi, Viktória</creatorcontrib><creatorcontrib>Maglóczky, Zsófia</creatorcontrib><creatorcontrib>Szűcs, Iván</creatorcontrib><creatorcontrib>Rácz, Gergely</creatorcontrib><creatorcontrib>Matolcsy, András</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Watanabe, Masahiko</creatorcontrib><creatorcontrib>Kádár, Andrea</creatorcontrib><creatorcontrib>Fekete, Csaba</creatorcontrib><creatorcontrib>Kalló, Imre</creatorcontrib><creatorcontrib>Hrabovszky, Erik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takács, Szabolcs</au><au>Bardóczi, Zsuzsanna</au><au>Skrapits, Katalin</au><au>Göcz, Balázs</au><au>Váczi, Viktória</au><au>Maglóczky, Zsófia</au><au>Szűcs, Iván</au><au>Rácz, Gergely</au><au>Matolcsy, András</au><au>Dhillo, Waljit S.</au><au>Watanabe, Masahiko</au><au>Kádár, Andrea</au><au>Fekete, Csaba</au><au>Kalló, Imre</au><au>Hrabovszky, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>223</volume><issue>5</issue><spage>2143</spage><epage>2156</epage><pages>2143-2156</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of
post mortem
tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly
post mortem
allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29380121</pmid><doi>10.1007/s00429-018-1610-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2018-06, Vol.223 (5), p.2143-2156 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_proquest_miscellaneous_1993010118 |
source | MEDLINE; SpringerNature Journals |
subjects | Aged Aged, 80 and over Anatomy Autopsy Axons Axons - metabolism Axons - ultrastructure Biomedical and Life Sciences Biomedicine Carbocyanines - metabolism Cell Biology Cell Body - ultrastructure Dendrites - metabolism Dendrites - ultrastructure Dendritic spines gamma-Aminobutyric Acid - metabolism Glutamatergic transmission Glutamic Acid - metabolism Glutamic acid transporter Gonadotropin-releasing hormone Gonadotropins Humans Hypothalamus Hypothalamus - cytology Imaging, Three-Dimensional Immunoelectron microscopy Innervation Isoforms Kiss1 protein Kisspeptins - metabolism Kisspeptins - ultrastructure Lipophilic Lysine - analogs & derivatives Lysine - metabolism Male Microscopy Microscopy, Confocal Microscopy, Immunoelectron Middle Aged Nerve Net - metabolism Nerve Net - ultrastructure Neurology Neurons Neurons - cytology Neurons - metabolism Neurosciences Neurotransmission Original Article Perfusion Pituitary (anterior) Synapses - metabolism Synapses - ultrastructure Synaptic vesicles Ultrastructure Vesicular Glutamate Transport Protein 2 - metabolism Vesicular Glutamate Transport Protein 2 - ultrastructure Vesicular Inhibitory Amino Acid Transport Proteins - metabolism Vesicular Inhibitory Amino Acid Transport Proteins - ultrastructure |
title | Post mortem single-cell labeling with DiI and immunoelectron microscopy unveil the fine structure of kisspeptin neurons in humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%20mortem%20single-cell%20labeling%20with%20DiI%20and%20immunoelectron%20microscopy%20unveil%20the%20fine%20structure%20of%20kisspeptin%20neurons%20in%20humans&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Tak%C3%A1cs,%20Szabolcs&rft.date=2018-06-01&rft.volume=223&rft.issue=5&rft.spage=2143&rft.epage=2156&rft.pages=2143-2156&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-018-1610-8&rft_dat=%3Cproquest_cross%3E1993520247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993520247&rft_id=info:pmid/29380121&rfr_iscdi=true |