Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density
The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-03, Vol.30 (12), p.e1704947-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e1704947 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Qian, Guoyu Zhu, Bin Liao, Xiangbiao Zhai, Haowei Srinivasan, Arvind Fritz, Nathan Joseph Cheng, Qian Ning, Mingqiang Qie, Boyu Li, Yi Yuan, Songliu Zhu, Jia Chen, Xi Yang, Yuan |
description | The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices.
A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell. |
doi_str_mv | 10.1002/adma.201704947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993007347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017721313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</originalsourceid><addsrcrecordid>eNqFkMlO5DAQhi00CJrlyhFFmsscSFOOkzg-NjtSIySWs-U45W4zWXrsRNA3HoFn5Elwq4GR5jKnWvTVr9JHyAGFMQVIjlXVqHEClEMqUr5BRjRLaJyCyH6QEQiWxSJPi22y4_0TAIgc8i2ynQhWMJ6JESlPbGdbv7AOq6PofmFbfH99m9rfeBRd1Phiyzp0d6jnys1QhSma2n5uhyZg110bnai-R2fRR89hH13Z2Tw6b9HNltEZtt72yz2yaVTtcf-z7pLHi_OH06t4ent5fTqZxjqlwGOdcFZqmmXcFInSUOU5okpMWuasMEooCpXRhotKoEkLVZRVjkxnJShuwhXbJb_WuQvX_RnQ97KxXmNdqxa7wUsqBAPgLF2hP_9Bn7rBteE7uXLJE8ooC9R4TWnXee_QyIWzjXJLSUGu7MuVffltPxwcfsYOZYPVN_6lOwBiDTzbGpf_iZOTs5vJ3_APFgOS8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017721313</pqid></control><display><type>article</type><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><source>Access via Wiley Online Library</source><creator>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</creator><creatorcontrib>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</creatorcontrib><description>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices.
A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704947</identifier><identifier>PMID: 29383759</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Density ; Electrodes ; energy density ; Energy storage ; Flexibility ; flexible batteries ; Flux density ; Lithium ; Lithium-ion batteries ; Materials science ; Rechargeable batteries ; Spine ; Storage batteries ; Strain ; Vertebrae</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (12), p.e1704947-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</citedby><cites>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</cites><orcidid>0000-0003-0264-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704947$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704947$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29383759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Liao, Xiangbiao</creatorcontrib><creatorcontrib>Zhai, Haowei</creatorcontrib><creatorcontrib>Srinivasan, Arvind</creatorcontrib><creatorcontrib>Fritz, Nathan Joseph</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Ning, Mingqiang</creatorcontrib><creatorcontrib>Qie, Boyu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Yuan, Songliu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices.
A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</description><subject>Biomimetics</subject><subject>Density</subject><subject>Electrodes</subject><subject>energy density</subject><subject>Energy storage</subject><subject>Flexibility</subject><subject>flexible batteries</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Rechargeable batteries</subject><subject>Spine</subject><subject>Storage batteries</subject><subject>Strain</subject><subject>Vertebrae</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMlO5DAQhi00CJrlyhFFmsscSFOOkzg-NjtSIySWs-U45W4zWXrsRNA3HoFn5Elwq4GR5jKnWvTVr9JHyAGFMQVIjlXVqHEClEMqUr5BRjRLaJyCyH6QEQiWxSJPi22y4_0TAIgc8i2ynQhWMJ6JESlPbGdbv7AOq6PofmFbfH99m9rfeBRd1Phiyzp0d6jnys1QhSma2n5uhyZg110bnai-R2fRR89hH13Z2Tw6b9HNltEZtt72yz2yaVTtcf-z7pLHi_OH06t4ent5fTqZxjqlwGOdcFZqmmXcFInSUOU5okpMWuasMEooCpXRhotKoEkLVZRVjkxnJShuwhXbJb_WuQvX_RnQ97KxXmNdqxa7wUsqBAPgLF2hP_9Bn7rBteE7uXLJE8ooC9R4TWnXee_QyIWzjXJLSUGu7MuVffltPxwcfsYOZYPVN_6lOwBiDTzbGpf_iZOTs5vJ3_APFgOS8Q</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Qian, Guoyu</creator><creator>Zhu, Bin</creator><creator>Liao, Xiangbiao</creator><creator>Zhai, Haowei</creator><creator>Srinivasan, Arvind</creator><creator>Fritz, Nathan Joseph</creator><creator>Cheng, Qian</creator><creator>Ning, Mingqiang</creator><creator>Qie, Boyu</creator><creator>Li, Yi</creator><creator>Yuan, Songliu</creator><creator>Zhu, Jia</creator><creator>Chen, Xi</creator><creator>Yang, Yuan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid></search><sort><creationdate>201803</creationdate><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><author>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomimetics</topic><topic>Density</topic><topic>Electrodes</topic><topic>energy density</topic><topic>Energy storage</topic><topic>Flexibility</topic><topic>flexible batteries</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Rechargeable batteries</topic><topic>Spine</topic><topic>Storage batteries</topic><topic>Strain</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Liao, Xiangbiao</creatorcontrib><creatorcontrib>Zhai, Haowei</creatorcontrib><creatorcontrib>Srinivasan, Arvind</creatorcontrib><creatorcontrib>Fritz, Nathan Joseph</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Ning, Mingqiang</creatorcontrib><creatorcontrib>Qie, Boyu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Yuan, Songliu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guoyu</au><au>Zhu, Bin</au><au>Liao, Xiangbiao</au><au>Zhai, Haowei</au><au>Srinivasan, Arvind</au><au>Fritz, Nathan Joseph</au><au>Cheng, Qian</au><au>Ning, Mingqiang</au><au>Qie, Boyu</au><au>Li, Yi</au><au>Yuan, Songliu</au><au>Zhu, Jia</au><au>Chen, Xi</au><au>Yang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>12</issue><spage>e1704947</spage><epage>n/a</epage><pages>e1704947-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices.
A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29383759</pmid><doi>10.1002/adma.201704947</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-03, Vol.30 (12), p.e1704947-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1993007347 |
source | Access via Wiley Online Library |
subjects | Biomimetics Density Electrodes energy density Energy storage Flexibility flexible batteries Flux density Lithium Lithium-ion batteries Materials science Rechargeable batteries Spine Storage batteries Strain Vertebrae |
title | Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired,%20Spine%E2%80%90Like,%20Flexible,%20Rechargeable%20Lithium%E2%80%90Ion%20Batteries%20with%20High%20Energy%20Density&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Qian,%20Guoyu&rft.date=2018-03&rft.volume=30&rft.issue=12&rft.spage=e1704947&rft.epage=n/a&rft.pages=e1704947-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704947&rft_dat=%3Cproquest_cross%3E2017721313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017721313&rft_id=info:pmid/29383759&rfr_iscdi=true |