Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density

The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-03, Vol.30 (12), p.e1704947-n/a
Hauptverfasser: Qian, Guoyu, Zhu, Bin, Liao, Xiangbiao, Zhai, Haowei, Srinivasan, Arvind, Fritz, Nathan Joseph, Cheng, Qian, Ning, Mingqiang, Qie, Boyu, Li, Yi, Yuan, Songliu, Zhu, Jia, Chen, Xi, Yang, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e1704947
container_title Advanced materials (Weinheim)
container_volume 30
creator Qian, Guoyu
Zhu, Bin
Liao, Xiangbiao
Zhai, Haowei
Srinivasan, Arvind
Fritz, Nathan Joseph
Cheng, Qian
Ning, Mingqiang
Qie, Boyu
Li, Yi
Yuan, Songliu
Zhu, Jia
Chen, Xi
Yang, Yuan
description The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices. A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.
doi_str_mv 10.1002/adma.201704947
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993007347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017721313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</originalsourceid><addsrcrecordid>eNqFkMlO5DAQhi00CJrlyhFFmsscSFOOkzg-NjtSIySWs-U45W4zWXrsRNA3HoFn5Elwq4GR5jKnWvTVr9JHyAGFMQVIjlXVqHEClEMqUr5BRjRLaJyCyH6QEQiWxSJPi22y4_0TAIgc8i2ynQhWMJ6JESlPbGdbv7AOq6PofmFbfH99m9rfeBRd1Phiyzp0d6jnys1QhSma2n5uhyZg110bnai-R2fRR89hH13Z2Tw6b9HNltEZtt72yz2yaVTtcf-z7pLHi_OH06t4ent5fTqZxjqlwGOdcFZqmmXcFInSUOU5okpMWuasMEooCpXRhotKoEkLVZRVjkxnJShuwhXbJb_WuQvX_RnQ97KxXmNdqxa7wUsqBAPgLF2hP_9Bn7rBteE7uXLJE8ooC9R4TWnXee_QyIWzjXJLSUGu7MuVffltPxwcfsYOZYPVN_6lOwBiDTzbGpf_iZOTs5vJ3_APFgOS8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017721313</pqid></control><display><type>article</type><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><source>Access via Wiley Online Library</source><creator>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</creator><creatorcontrib>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</creatorcontrib><description>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices. A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704947</identifier><identifier>PMID: 29383759</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Density ; Electrodes ; energy density ; Energy storage ; Flexibility ; flexible batteries ; Flux density ; Lithium ; Lithium-ion batteries ; Materials science ; Rechargeable batteries ; Spine ; Storage batteries ; Strain ; Vertebrae</subject><ispartof>Advanced materials (Weinheim), 2018-03, Vol.30 (12), p.e1704947-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</citedby><cites>FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</cites><orcidid>0000-0003-0264-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704947$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704947$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29383759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Liao, Xiangbiao</creatorcontrib><creatorcontrib>Zhai, Haowei</creatorcontrib><creatorcontrib>Srinivasan, Arvind</creatorcontrib><creatorcontrib>Fritz, Nathan Joseph</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Ning, Mingqiang</creatorcontrib><creatorcontrib>Qie, Boyu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Yuan, Songliu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices. A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</description><subject>Biomimetics</subject><subject>Density</subject><subject>Electrodes</subject><subject>energy density</subject><subject>Energy storage</subject><subject>Flexibility</subject><subject>flexible batteries</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Rechargeable batteries</subject><subject>Spine</subject><subject>Storage batteries</subject><subject>Strain</subject><subject>Vertebrae</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMlO5DAQhi00CJrlyhFFmsscSFOOkzg-NjtSIySWs-U45W4zWXrsRNA3HoFn5Elwq4GR5jKnWvTVr9JHyAGFMQVIjlXVqHEClEMqUr5BRjRLaJyCyH6QEQiWxSJPi22y4_0TAIgc8i2ynQhWMJ6JESlPbGdbv7AOq6PofmFbfH99m9rfeBRd1Phiyzp0d6jnys1QhSma2n5uhyZg110bnai-R2fRR89hH13Z2Tw6b9HNltEZtt72yz2yaVTtcf-z7pLHi_OH06t4ent5fTqZxjqlwGOdcFZqmmXcFInSUOU5okpMWuasMEooCpXRhotKoEkLVZRVjkxnJShuwhXbJb_WuQvX_RnQ97KxXmNdqxa7wUsqBAPgLF2hP_9Bn7rBteE7uXLJE8ooC9R4TWnXee_QyIWzjXJLSUGu7MuVffltPxwcfsYOZYPVN_6lOwBiDTzbGpf_iZOTs5vJ3_APFgOS8Q</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Qian, Guoyu</creator><creator>Zhu, Bin</creator><creator>Liao, Xiangbiao</creator><creator>Zhai, Haowei</creator><creator>Srinivasan, Arvind</creator><creator>Fritz, Nathan Joseph</creator><creator>Cheng, Qian</creator><creator>Ning, Mingqiang</creator><creator>Qie, Boyu</creator><creator>Li, Yi</creator><creator>Yuan, Songliu</creator><creator>Zhu, Jia</creator><creator>Chen, Xi</creator><creator>Yang, Yuan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid></search><sort><creationdate>201803</creationdate><title>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</title><author>Qian, Guoyu ; Zhu, Bin ; Liao, Xiangbiao ; Zhai, Haowei ; Srinivasan, Arvind ; Fritz, Nathan Joseph ; Cheng, Qian ; Ning, Mingqiang ; Qie, Boyu ; Li, Yi ; Yuan, Songliu ; Zhu, Jia ; Chen, Xi ; Yang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-c273bc1557f82ac0d66eea2f4b638fa9a10dfcf79d9ef48a8bd6e3c5b0a7f5573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomimetics</topic><topic>Density</topic><topic>Electrodes</topic><topic>energy density</topic><topic>Energy storage</topic><topic>Flexibility</topic><topic>flexible batteries</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Rechargeable batteries</topic><topic>Spine</topic><topic>Storage batteries</topic><topic>Strain</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Liao, Xiangbiao</creatorcontrib><creatorcontrib>Zhai, Haowei</creatorcontrib><creatorcontrib>Srinivasan, Arvind</creatorcontrib><creatorcontrib>Fritz, Nathan Joseph</creatorcontrib><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Ning, Mingqiang</creatorcontrib><creatorcontrib>Qie, Boyu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Yuan, Songliu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guoyu</au><au>Zhu, Bin</au><au>Liao, Xiangbiao</au><au>Zhai, Haowei</au><au>Srinivasan, Arvind</au><au>Fritz, Nathan Joseph</au><au>Cheng, Qian</au><au>Ning, Mingqiang</au><au>Qie, Boyu</au><au>Li, Yi</au><au>Yuan, Songliu</au><au>Zhu, Jia</au><au>Chen, Xi</au><au>Yang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-03</date><risdate>2018</risdate><volume>30</volume><issue>12</issue><spage>e1704947</spage><epage>n/a</epage><pages>e1704947-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of flexible and wearable electronics proposes the persistent requirements of high‐performance flexible batteries. Much progress has been achieved recently, but how to obtain remarkable flexibility and high energy density simultaneously remains a great challenge. Here, a facile and scalable approach to fabricate spine‐like flexible lithium‐ion batteries is reported. A thick, rigid segment to store energy through winding the electrodes corresponds to the vertebra of animals, while a thin, unwound, and flexible part acts as marrow to interconnect all vertebra‐like stacks together, providing excellent flexibility for the whole battery. As the volume of the rigid electrode part is significantly larger than the flexible interconnection, the energy density of such a flexible battery can be over 85% of that in conventional packing. A nonoptimized flexible cell with an energy density of 242 Wh L−1 is demonstrated with packaging considered, which is 86.1% of a standard prismatic cell using the same components. The cell also successfully survives a harsh dynamic mechanical load test due to this rational bioinspired design. Mechanical simulation results uncover the underlying mechanism: the maximum strain in the reported design (≈0.08%) is markedly smaller than traditional stacked cells (≈1.1%). This new approach offers great promise for applications in flexible devices. A spine‐like lithium‐ion battery, fabricated through a scalable and facile approach, demonstrates a stable cycle performance in different stress conditions, and high energy density compared to commercial batteries. It also presents a steady cycling under dynamic mechanical load testing. Simulation results uncover a much smaller strain tolerated for the design compared with that in a prismatic cell and a stacked pouch cell.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29383759</pmid><doi>10.1002/adma.201704947</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-03, Vol.30 (12), p.e1704947-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1993007347
source Access via Wiley Online Library
subjects Biomimetics
Density
Electrodes
energy density
Energy storage
Flexibility
flexible batteries
Flux density
Lithium
Lithium-ion batteries
Materials science
Rechargeable batteries
Spine
Storage batteries
Strain
Vertebrae
title Bioinspired, Spine‐Like, Flexible, Rechargeable Lithium‐Ion Batteries with High Energy Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired,%20Spine%E2%80%90Like,%20Flexible,%20Rechargeable%20Lithium%E2%80%90Ion%20Batteries%20with%20High%20Energy%20Density&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Qian,%20Guoyu&rft.date=2018-03&rft.volume=30&rft.issue=12&rft.spage=e1704947&rft.epage=n/a&rft.pages=e1704947-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704947&rft_dat=%3Cproquest_cross%3E2017721313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017721313&rft_id=info:pmid/29383759&rfr_iscdi=true