Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors

Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-02, Vol.18 (2), p.1290-1295
Hauptverfasser: Bugiel, Michael, Mitra, Aniruddha, Girardo, Salvatore, Diez, Stefan, Schäffer, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 2
container_start_page 1290
container_title Nano letters
container_volume 18
creator Bugiel, Michael
Mitra, Aniruddha
Girardo, Salvatore
Diez, Stefan
Schäffer, Erik
description Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.
doi_str_mv 10.1021/acs.nanolett.7b04971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1993005383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993005383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-44341b6b474ba5b4f71d988aa71ad9f6e5aaa2a186016c9c9879d1745771f6b03</originalsourceid><addsrcrecordid>eNp9kE1u2zAQhYmiQf5vUBRcdiOXtChRXBZO0gSNkYWdtTCURi1TiXQ5FIrseoVeMSeJDNtZZvVm8d43wMfYJylmUszlV2ho5sGHHlOaaSuU0fIDO5VFLrLSmPnHt7tSJ-yM6EkIYfJCHLOTuckrUQp9ymiJQGN0_idfuiaGNNqxR74aNxjTX0eJg2_5FXbYJOL2ma9_RcTsyg3oyQUPfXYTYoPZoodhw9cRmt9bWOj4asoJ9cN5JOdf_v2XfBlSiHTBjjroCS_3ec4eb67Xi9vs_uH73eLbfQZKqpQplStpS6u0slBY1WnZmqoC0BJa05VYAMAcZFUKWTamMZU2rdSq0Fp2pRX5Ofuy425i-DMipXpw1GDfg8cwUi2NyYUo8iqfqmpXnRQQRezqTXQDxOdainqru5501wfd9V73NPu8_zDaAdu30cHvVBC7wnb-FMY4CaP3ma9VT5Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993005383</pqid></control><display><type>article</type><title>Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bugiel, Michael ; Mitra, Aniruddha ; Girardo, Salvatore ; Diez, Stefan ; Schäffer, Erik</creator><creatorcontrib>Bugiel, Michael ; Mitra, Aniruddha ; Girardo, Salvatore ; Diez, Stefan ; Schäffer, Erik</creatorcontrib><description>Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04971</identifier><identifier>PMID: 29380607</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Immobilized Proteins - metabolism ; Kinesin - chemistry ; Kinesin - metabolism ; Microtubules - metabolism ; Motion ; Optical Tweezers ; Protein Conformation</subject><ispartof>Nano letters, 2018-02, Vol.18 (2), p.1290-1295</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-44341b6b474ba5b4f71d988aa71ad9f6e5aaa2a186016c9c9879d1745771f6b03</citedby><cites>FETCH-LOGICAL-a414t-44341b6b474ba5b4f71d988aa71ad9f6e5aaa2a186016c9c9879d1745771f6b03</cites><orcidid>0000-0002-0750-8515 ; 0000-0001-7876-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04971$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04971$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29380607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugiel, Michael</creatorcontrib><creatorcontrib>Mitra, Aniruddha</creatorcontrib><creatorcontrib>Girardo, Salvatore</creatorcontrib><creatorcontrib>Diez, Stefan</creatorcontrib><creatorcontrib>Schäffer, Erik</creatorcontrib><title>Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.</description><subject>Immobilized Proteins - metabolism</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Motion</subject><subject>Optical Tweezers</subject><subject>Protein Conformation</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1u2zAQhYmiQf5vUBRcdiOXtChRXBZO0gSNkYWdtTCURi1TiXQ5FIrseoVeMSeJDNtZZvVm8d43wMfYJylmUszlV2ho5sGHHlOaaSuU0fIDO5VFLrLSmPnHt7tSJ-yM6EkIYfJCHLOTuckrUQp9ymiJQGN0_idfuiaGNNqxR74aNxjTX0eJg2_5FXbYJOL2ma9_RcTsyg3oyQUPfXYTYoPZoodhw9cRmt9bWOj4asoJ9cN5JOdf_v2XfBlSiHTBjjroCS_3ec4eb67Xi9vs_uH73eLbfQZKqpQplStpS6u0slBY1WnZmqoC0BJa05VYAMAcZFUKWTamMZU2rdSq0Fp2pRX5Ofuy425i-DMipXpw1GDfg8cwUi2NyYUo8iqfqmpXnRQQRezqTXQDxOdainqru5501wfd9V73NPu8_zDaAdu30cHvVBC7wnb-FMY4CaP3ma9VT5Fw</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Bugiel, Michael</creator><creator>Mitra, Aniruddha</creator><creator>Girardo, Salvatore</creator><creator>Diez, Stefan</creator><creator>Schäffer, Erik</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0750-8515</orcidid><orcidid>https://orcid.org/0000-0001-7876-085X</orcidid></search><sort><creationdate>20180214</creationdate><title>Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors</title><author>Bugiel, Michael ; Mitra, Aniruddha ; Girardo, Salvatore ; Diez, Stefan ; Schäffer, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-44341b6b474ba5b4f71d988aa71ad9f6e5aaa2a186016c9c9879d1745771f6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Immobilized Proteins - metabolism</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Motion</topic><topic>Optical Tweezers</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugiel, Michael</creatorcontrib><creatorcontrib>Mitra, Aniruddha</creatorcontrib><creatorcontrib>Girardo, Salvatore</creatorcontrib><creatorcontrib>Diez, Stefan</creatorcontrib><creatorcontrib>Schäffer, Erik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugiel, Michael</au><au>Mitra, Aniruddha</au><au>Girardo, Salvatore</au><au>Diez, Stefan</au><au>Schäffer, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>1290</spage><epage>1295</epage><pages>1290-1295</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29380607</pmid><doi>10.1021/acs.nanolett.7b04971</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0750-8515</orcidid><orcidid>https://orcid.org/0000-0001-7876-085X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-02, Vol.18 (2), p.1290-1295
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1993005383
source MEDLINE; ACS Publications
subjects Immobilized Proteins - metabolism
Kinesin - chemistry
Kinesin - metabolism
Microtubules - metabolism
Motion
Optical Tweezers
Protein Conformation
title Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin‑1 Motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Microtubule%20Supertwist%20and%20Defects%20by%20Three-Dimensional-Force-Clamp%20Tracking%20of%20Single%20Kinesin%E2%80%911%20Motors&rft.jtitle=Nano%20letters&rft.au=Bugiel,%20Michael&rft.date=2018-02-14&rft.volume=18&rft.issue=2&rft.spage=1290&rft.epage=1295&rft.pages=1290-1295&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04971&rft_dat=%3Cproquest_cross%3E1993005383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993005383&rft_id=info:pmid/29380607&rfr_iscdi=true