Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA
Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplank...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 2004-12, Vol.23 (12), p.3003-3010 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3010 |
---|---|
container_issue | 12 |
container_start_page | 3003 |
container_title | Environmental toxicology and chemistry |
container_volume | 23 |
creator | Schlekat, Christian E. Purkerson, David G. Luoma, Samuel N. |
description | Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton‐based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73‐250 μm) and large (250‐500 μm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41‐52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12‐25% d−1), especially compared to bivalves (2‐3% d−1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5‐5.4 μg g−1) was lower than concentrations of 4.5 to 24 μg g−1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed. |
doi_str_mv | 10.1897/03-4.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19926217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19926217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4187-9086c59ad9e32c88e73a9c5a3772d98a4f8a5f1f81283b876de1cf9eab32bd643</originalsourceid><addsrcrecordid>eNp10MtuEzEUBmALgWgo8AjIG1h1Wl_Gt2VJaUFKAbVUYWed8Xhag2ec2hmVvD0TJSIrNj5efOeiH6G3lJxSbdQZ4VV9Sp-hGRWCVVpS_RzNiOKkUkzqI_SqlF-EUGmMeYmOqJC1VkrOkLtOrY9huMfFRz-EscdNSODc2I8R1iENeP2Q03j_gCFvf6vU4i5Nz5NvCg4DvoUBX2YYXCgu4Y-wOcFziKFLeQhwgu9uz1-jFx3E4t_s6zG6u_z0Y_65Wny7-jI_X1SuplpVhmjphIHWeM6c1l5xME4AV4q1RkPdaRAd7TRlmjdaydZT1xkPDWdNK2t-jD7s5q5yehx9Wdt-usnHCINPY7HUGCYZVQfociol-86ucughbywldhunJdzWlk7w3X7i2PS-PbB9fhN4vwdQHMRul8PBSc6lYGRydOeeQvSb_6yzkxCSEcYpY9srq11PKGv_518P5N9WKq6EXX69sjdL-f1i8fPGLvlfOzKaNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19926217</pqid></control><display><type>article</type><title>Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schlekat, Christian E. ; Purkerson, David G. ; Luoma, Samuel N.</creator><creatorcontrib>Schlekat, Christian E. ; Purkerson, David G. ; Luoma, Samuel N.</creatorcontrib><description>Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton‐based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73‐250 μm) and large (250‐500 μm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41‐52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12‐25% d−1), especially compared to bivalves (2‐3% d−1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5‐5.4 μg g−1) was lower than concentrations of 4.5 to 24 μg g−1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1897/03-4.1</identifier><identifier>PMID: 15648776</identifier><identifier>CODEN: ETOCDK</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals, Inc</publisher><subject>Acartia ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; Arthropoda ; Bioaccumulation ; Biological and medical sciences ; Brackish ; Copepod ; Copepoda - chemistry ; Copepoda - metabolism ; Crustacea - chemistry ; Crustacea - metabolism ; Diatoms ; Ecotoxicology, biological effects of pollution ; Environmental Monitoring - methods ; Food Chain ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Marine ; Models, Theoretical ; Morone saxatilis ; Mysid ; Neomysis mercedis ; Oithona ; San Francisco ; Seawater ; Selenium ; Selenium - analysis ; Selenium - metabolism ; Trophic transfer ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - metabolism</subject><ispartof>Environmental toxicology and chemistry, 2004-12, Vol.23 (12), p.3003-3010</ispartof><rights>Copyright © 2004 SETAC</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4187-9086c59ad9e32c88e73a9c5a3772d98a4f8a5f1f81283b876de1cf9eab32bd643</citedby><cites>FETCH-LOGICAL-c4187-9086c59ad9e32c88e73a9c5a3772d98a4f8a5f1f81283b876de1cf9eab32bd643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1897%2F03-4.1$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1897%2F03-4.1$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16336520$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15648776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlekat, Christian E.</creatorcontrib><creatorcontrib>Purkerson, David G.</creatorcontrib><creatorcontrib>Luoma, Samuel N.</creatorcontrib><title>Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA</title><title>Environmental toxicology and chemistry</title><addtitle>Environmental Toxicology and Chemistry</addtitle><description>Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton‐based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73‐250 μm) and large (250‐500 μm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41‐52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12‐25% d−1), especially compared to bivalves (2‐3% d−1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5‐5.4 μg g−1) was lower than concentrations of 4.5 to 24 μg g−1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.</description><subject>Acartia</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Arthropoda</subject><subject>Bioaccumulation</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Copepod</subject><subject>Copepoda - chemistry</subject><subject>Copepoda - metabolism</subject><subject>Crustacea - chemistry</subject><subject>Crustacea - metabolism</subject><subject>Diatoms</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environmental Monitoring - methods</subject><subject>Food Chain</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Marine</subject><subject>Models, Theoretical</subject><subject>Morone saxatilis</subject><subject>Mysid</subject><subject>Neomysis mercedis</subject><subject>Oithona</subject><subject>San Francisco</subject><subject>Seawater</subject><subject>Selenium</subject><subject>Selenium - analysis</subject><subject>Selenium - metabolism</subject><subject>Trophic transfer</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtuEzEUBmALgWgo8AjIG1h1Wl_Gt2VJaUFKAbVUYWed8Xhag2ec2hmVvD0TJSIrNj5efOeiH6G3lJxSbdQZ4VV9Sp-hGRWCVVpS_RzNiOKkUkzqI_SqlF-EUGmMeYmOqJC1VkrOkLtOrY9huMfFRz-EscdNSODc2I8R1iENeP2Q03j_gCFvf6vU4i5Nz5NvCg4DvoUBX2YYXCgu4Y-wOcFziKFLeQhwgu9uz1-jFx3E4t_s6zG6u_z0Y_65Wny7-jI_X1SuplpVhmjphIHWeM6c1l5xME4AV4q1RkPdaRAd7TRlmjdaydZT1xkPDWdNK2t-jD7s5q5yehx9Wdt-usnHCINPY7HUGCYZVQfociol-86ucughbywldhunJdzWlk7w3X7i2PS-PbB9fhN4vwdQHMRul8PBSc6lYGRydOeeQvSb_6yzkxCSEcYpY9srq11PKGv_518P5N9WKq6EXX69sjdL-f1i8fPGLvlfOzKaNw</recordid><startdate>200412</startdate><enddate>200412</enddate><creator>Schlekat, Christian E.</creator><creator>Purkerson, David G.</creator><creator>Luoma, Samuel N.</creator><general>Wiley Periodicals, Inc</general><general>SETAC</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>200412</creationdate><title>Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA</title><author>Schlekat, Christian E. ; Purkerson, David G. ; Luoma, Samuel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4187-9086c59ad9e32c88e73a9c5a3772d98a4f8a5f1f81283b876de1cf9eab32bd643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acartia</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Arthropoda</topic><topic>Bioaccumulation</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Copepod</topic><topic>Copepoda - chemistry</topic><topic>Copepoda - metabolism</topic><topic>Crustacea - chemistry</topic><topic>Crustacea - metabolism</topic><topic>Diatoms</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environmental Monitoring - methods</topic><topic>Food Chain</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Marine</topic><topic>Models, Theoretical</topic><topic>Morone saxatilis</topic><topic>Mysid</topic><topic>Neomysis mercedis</topic><topic>Oithona</topic><topic>San Francisco</topic><topic>Seawater</topic><topic>Selenium</topic><topic>Selenium - analysis</topic><topic>Selenium - metabolism</topic><topic>Trophic transfer</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlekat, Christian E.</creatorcontrib><creatorcontrib>Purkerson, David G.</creatorcontrib><creatorcontrib>Luoma, Samuel N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlekat, Christian E.</au><au>Purkerson, David G.</au><au>Luoma, Samuel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environmental Toxicology and Chemistry</addtitle><date>2004-12</date><risdate>2004</risdate><volume>23</volume><issue>12</issue><spage>3003</spage><epage>3010</epage><pages>3003-3010</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><coden>ETOCDK</coden><abstract>Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton‐based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73‐250 μm) and large (250‐500 μm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41‐52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12‐25% d−1), especially compared to bivalves (2‐3% d−1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5‐5.4 μg g−1) was lower than concentrations of 4.5 to 24 μg g−1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals, Inc</pub><pmid>15648776</pmid><doi>10.1897/03-4.1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2004-12, Vol.23 (12), p.3003-3010 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_miscellaneous_19926217 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acartia Animal, plant and microbial ecology Animals Applied ecology Arthropoda Bioaccumulation Biological and medical sciences Brackish Copepod Copepoda - chemistry Copepoda - metabolism Crustacea - chemistry Crustacea - metabolism Diatoms Ecotoxicology, biological effects of pollution Environmental Monitoring - methods Food Chain Freshwater Fundamental and applied biological sciences. Psychology General aspects Marine Models, Theoretical Morone saxatilis Mysid Neomysis mercedis Oithona San Francisco Seawater Selenium Selenium - analysis Selenium - metabolism Trophic transfer Water Pollutants, Chemical - analysis Water Pollutants, Chemical - metabolism |
title | Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20selenium%20bioaccumulation%20through%20arthropod%20food%20webs%20in%20San%20Francisco%20Bay,%20California,%20USA&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Schlekat,%20Christian%20E.&rft.date=2004-12&rft.volume=23&rft.issue=12&rft.spage=3003&rft.epage=3010&rft.pages=3003-3010&rft.issn=0730-7268&rft.eissn=1552-8618&rft.coden=ETOCDK&rft_id=info:doi/10.1897/03-4.1&rft_dat=%3Cproquest_cross%3E19926217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19926217&rft_id=info:pmid/15648776&rfr_iscdi=true |