Vascular endothelium dysfunction: a conservative target in metabolic disorders

Aim Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation research 2018-05, Vol.67 (5), p.391-405
Hauptverfasser: Jamwal, Shalini, Sharma, Saurabh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 5
container_start_page 391
container_title Inflammation research
container_volume 67
creator Jamwal, Shalini
Sharma, Saurabh
description Aim Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. Methods The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. Results Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. Conclusion Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.
doi_str_mv 10.1007/s00011-018-1129-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1992012317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992012317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4ec6e46506fb336af7168e039518484addb229e95fbb153d17833ed63be3956b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaiZp09SbLH7BohcVbyFtpmuXtlmTdmH_vVl2FRE8zcA8887wEHIK9BIoza48pRQgpiBjAJbHco-MIWE0zql83w89ZTzmktMROfJ-EWjJJDskI5bzjDHBxuTpTftyaLSLsDO2_8CmHtrIrH01dGVf2-460lFpO49upft6hVGv3Rz7qO6iFntd2KYuI1N76ww6f0wOKt14PNnVCXm9u32ZPsSz5_vH6c0sLhMu-zjBUmAiUiqqgnOhqwyERMrzFGQiE21MwViOeVoVBaTcQCY5RyN4gYERBZ-Qi23u0tnPAX2v2tqX2DS6Qzt4BXnOKDAOWUDP_6ALO7gufLeheJKmgm8o2FKls947rNTS1a12awVUbWSrrWwVZKuNbCXDztkueShaND8b33YDwLaAD6Nuju7X6X9TvwBW3olk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993455637</pqid></control><display><type>article</type><title>Vascular endothelium dysfunction: a conservative target in metabolic disorders</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jamwal, Shalini ; Sharma, Saurabh</creator><creatorcontrib>Jamwal, Shalini ; Sharma, Saurabh</creatorcontrib><description>Aim Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. Methods The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. Results Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. Conclusion Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.</description><identifier>ISSN: 1023-3830</identifier><identifier>EISSN: 1420-908X</identifier><identifier>DOI: 10.1007/s00011-018-1129-8</identifier><identifier>PMID: 29372262</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aldehyde reductase ; Allergology ; Angiogenesis ; Angiotensin ; Angiotensin II ; Anions ; Arginine ; Bioavailability ; Biomedical and Life Sciences ; Biomedicine ; Cholesterol ; Cytokines ; Dephosphorylation ; Dermatology ; Diabetes ; Diabetes mellitus ; Disorders ; Drugs ; Endothelium ; Glycosylation ; Homeostasis ; Homocysteine ; Hypercholesterolemia ; Hyperhomocysteinemia ; Hypertension ; Immunology ; Inflammation ; Kinases ; Metabolic disorders ; Molecular modelling ; Monomethyl-L-arginine ; Neurology ; Nitric oxide ; Nutrients ; Oxidation ; Oxidative stress ; Permeability ; Peroxides ; Pharmacology/Toxicology ; Phosphorylation ; Prostaglandins ; Protein kinase ; Reactive oxygen species ; Review ; Rheumatology ; Vasoconstriction ; Vasodilation ; Xanthine oxidase</subject><ispartof>Inflammation research, 2018-05, Vol.67 (5), p.391-405</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Inflammation Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4ec6e46506fb336af7168e039518484addb229e95fbb153d17833ed63be3956b3</citedby><cites>FETCH-LOGICAL-c438t-4ec6e46506fb336af7168e039518484addb229e95fbb153d17833ed63be3956b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00011-018-1129-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00011-018-1129-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29372262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jamwal, Shalini</creatorcontrib><creatorcontrib>Sharma, Saurabh</creatorcontrib><title>Vascular endothelium dysfunction: a conservative target in metabolic disorders</title><title>Inflammation research</title><addtitle>Inflamm. Res</addtitle><addtitle>Inflamm Res</addtitle><description>Aim Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. Methods The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. Results Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. Conclusion Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.</description><subject>Aldehyde reductase</subject><subject>Allergology</subject><subject>Angiogenesis</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Anions</subject><subject>Arginine</subject><subject>Bioavailability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cholesterol</subject><subject>Cytokines</subject><subject>Dephosphorylation</subject><subject>Dermatology</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Disorders</subject><subject>Drugs</subject><subject>Endothelium</subject><subject>Glycosylation</subject><subject>Homeostasis</subject><subject>Homocysteine</subject><subject>Hypercholesterolemia</subject><subject>Hyperhomocysteinemia</subject><subject>Hypertension</subject><subject>Immunology</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Metabolic disorders</subject><subject>Molecular modelling</subject><subject>Monomethyl-L-arginine</subject><subject>Neurology</subject><subject>Nitric oxide</subject><subject>Nutrients</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Permeability</subject><subject>Peroxides</subject><subject>Pharmacology/Toxicology</subject><subject>Phosphorylation</subject><subject>Prostaglandins</subject><subject>Protein kinase</subject><subject>Reactive oxygen species</subject><subject>Review</subject><subject>Rheumatology</subject><subject>Vasoconstriction</subject><subject>Vasodilation</subject><subject>Xanthine oxidase</subject><issn>1023-3830</issn><issn>1420-908X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaiZp09SbLH7BohcVbyFtpmuXtlmTdmH_vVl2FRE8zcA8887wEHIK9BIoza48pRQgpiBjAJbHco-MIWE0zql83w89ZTzmktMROfJ-EWjJJDskI5bzjDHBxuTpTftyaLSLsDO2_8CmHtrIrH01dGVf2-460lFpO49upft6hVGv3Rz7qO6iFntd2KYuI1N76ww6f0wOKt14PNnVCXm9u32ZPsSz5_vH6c0sLhMu-zjBUmAiUiqqgnOhqwyERMrzFGQiE21MwViOeVoVBaTcQCY5RyN4gYERBZ-Qi23u0tnPAX2v2tqX2DS6Qzt4BXnOKDAOWUDP_6ALO7gufLeheJKmgm8o2FKls947rNTS1a12awVUbWSrrWwVZKuNbCXDztkueShaND8b33YDwLaAD6Nuju7X6X9TvwBW3olk</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Jamwal, Shalini</creator><creator>Sharma, Saurabh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Vascular endothelium dysfunction: a conservative target in metabolic disorders</title><author>Jamwal, Shalini ; Sharma, Saurabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4ec6e46506fb336af7168e039518484addb229e95fbb153d17833ed63be3956b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aldehyde reductase</topic><topic>Allergology</topic><topic>Angiogenesis</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Anions</topic><topic>Arginine</topic><topic>Bioavailability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cholesterol</topic><topic>Cytokines</topic><topic>Dephosphorylation</topic><topic>Dermatology</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Disorders</topic><topic>Drugs</topic><topic>Endothelium</topic><topic>Glycosylation</topic><topic>Homeostasis</topic><topic>Homocysteine</topic><topic>Hypercholesterolemia</topic><topic>Hyperhomocysteinemia</topic><topic>Hypertension</topic><topic>Immunology</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Metabolic disorders</topic><topic>Molecular modelling</topic><topic>Monomethyl-L-arginine</topic><topic>Neurology</topic><topic>Nitric oxide</topic><topic>Nutrients</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Permeability</topic><topic>Peroxides</topic><topic>Pharmacology/Toxicology</topic><topic>Phosphorylation</topic><topic>Prostaglandins</topic><topic>Protein kinase</topic><topic>Reactive oxygen species</topic><topic>Review</topic><topic>Rheumatology</topic><topic>Vasoconstriction</topic><topic>Vasodilation</topic><topic>Xanthine oxidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamwal, Shalini</creatorcontrib><creatorcontrib>Sharma, Saurabh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Inflammation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamwal, Shalini</au><au>Sharma, Saurabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular endothelium dysfunction: a conservative target in metabolic disorders</atitle><jtitle>Inflammation research</jtitle><stitle>Inflamm. Res</stitle><addtitle>Inflamm Res</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>67</volume><issue>5</issue><spage>391</spage><epage>405</epage><pages>391-405</pages><issn>1023-3830</issn><eissn>1420-908X</eissn><abstract>Aim Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders. Methods The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms. Results Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide. Conclusion Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29372262</pmid><doi>10.1007/s00011-018-1129-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-3830
ispartof Inflammation research, 2018-05, Vol.67 (5), p.391-405
issn 1023-3830
1420-908X
language eng
recordid cdi_proquest_miscellaneous_1992012317
source SpringerLink Journals - AutoHoldings
subjects Aldehyde reductase
Allergology
Angiogenesis
Angiotensin
Angiotensin II
Anions
Arginine
Bioavailability
Biomedical and Life Sciences
Biomedicine
Cholesterol
Cytokines
Dephosphorylation
Dermatology
Diabetes
Diabetes mellitus
Disorders
Drugs
Endothelium
Glycosylation
Homeostasis
Homocysteine
Hypercholesterolemia
Hyperhomocysteinemia
Hypertension
Immunology
Inflammation
Kinases
Metabolic disorders
Molecular modelling
Monomethyl-L-arginine
Neurology
Nitric oxide
Nutrients
Oxidation
Oxidative stress
Permeability
Peroxides
Pharmacology/Toxicology
Phosphorylation
Prostaglandins
Protein kinase
Reactive oxygen species
Review
Rheumatology
Vasoconstriction
Vasodilation
Xanthine oxidase
title Vascular endothelium dysfunction: a conservative target in metabolic disorders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20endothelium%20dysfunction:%20a%20conservative%20target%20in%20metabolic%20disorders&rft.jtitle=Inflammation%20research&rft.au=Jamwal,%20Shalini&rft.date=2018-05-01&rft.volume=67&rft.issue=5&rft.spage=391&rft.epage=405&rft.pages=391-405&rft.issn=1023-3830&rft.eissn=1420-908X&rft_id=info:doi/10.1007/s00011-018-1129-8&rft_dat=%3Cproquest_cross%3E1992012317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993455637&rft_id=info:pmid/29372262&rfr_iscdi=true