Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center

Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2018-05, Vol.470 (5), p.809-822
Hauptverfasser: Siemens, Jan, Kamm, Gretel B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 5
container_start_page 809
container_title Pflügers Archiv
container_volume 470
creator Siemens, Jan
Kamm, Gretel B.
description Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.
doi_str_mv 10.1007/s00424-017-2101-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1992004395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993474787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a1f1129405723f89f940239ba00a6b4f8699e115fa1eb9ba16a1b34cd55aa2f43</originalsourceid><addsrcrecordid>eNp1kMFq3DAQhkVJ6W42eYBegiGXXtzOSLJlHcOStIGFXtpjEbJX2vViS45kH_btK-NtKIGcRmi--Uf6CPmM8BUBxLcIwCnPAUVOETCHD2SNnNGcArIrsgZgmJeirFbkOsYTAFBe0U9kRSUTnIFYkz9b03VTp0M2-CHVsfUuZtrts_FoQu-jcbF1h6w3zVG7NvYx83buZcfz4Mej7nTfNhc4mMMc4cM5a4wbTbghH63uorm91A35_fT4a_sj3_38_rx92OUNZ9WYa7SIVHIoBGW2kjYdKZO1BtBlzW1VSmkQC6vR1OkaS401482-KLSmlrMN-bLkDsG_TCaOqm9jk36mnfFTVCglTa6YLBJ6_wY9-Sm49LqZYlxwUYlE4UI1wccYjFVDaHsdzgpBze7V4l4l92p2ryDN3F2Sp7o3-9eJf7ITQBcgppY7mPDf6ndT_wLFLI-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993474787</pqid></control><display><type>article</type><title>Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Siemens, Jan ; Kamm, Gretel B.</creator><creatorcontrib>Siemens, Jan ; Kamm, Gretel B.</creatorcontrib><description>Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-017-2101-0</identifier><identifier>PMID: 29374307</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adipose Tissue, Brown - metabolism ; Adipose Tissue, Brown - physiology ; Animals ; Biological activity ; Biomedical and Life Sciences ; Biomedicine ; Body temperature ; Cell Biology ; Energy Metabolism ; Homeostasis ; Human Physiology ; Humans ; Hypothalamus (anterior) ; Hypothalamus - cytology ; Hypothalamus - physiology ; Invited Review ; Medulla Oblongata - cytology ; Medulla Oblongata - physiology ; Molecular Medicine ; Neurons - physiology ; Neurosciences ; Preoptic area ; Receptors ; Synaptic Transmission ; Temperature effects ; Thermogenesis ; Thermoregulation ; Thermosensing</subject><ispartof>Pflügers Archiv, 2018-05, Vol.470 (5), p.809-822</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Pflügers Archiv - European Journal of Physiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a1f1129405723f89f940239ba00a6b4f8699e115fa1eb9ba16a1b34cd55aa2f43</citedby><cites>FETCH-LOGICAL-c438t-a1f1129405723f89f940239ba00a6b4f8699e115fa1eb9ba16a1b34cd55aa2f43</cites><orcidid>0000-0001-9051-9217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-017-2101-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-017-2101-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29374307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siemens, Jan</creatorcontrib><creatorcontrib>Kamm, Gretel B.</creatorcontrib><title>Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.</description><subject>Adipose Tissue, Brown - metabolism</subject><subject>Adipose Tissue, Brown - physiology</subject><subject>Animals</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body temperature</subject><subject>Cell Biology</subject><subject>Energy Metabolism</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hypothalamus (anterior)</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - physiology</subject><subject>Invited Review</subject><subject>Medulla Oblongata - cytology</subject><subject>Medulla Oblongata - physiology</subject><subject>Molecular Medicine</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Preoptic area</subject><subject>Receptors</subject><subject>Synaptic Transmission</subject><subject>Temperature effects</subject><subject>Thermogenesis</subject><subject>Thermoregulation</subject><subject>Thermosensing</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFq3DAQhkVJ6W42eYBegiGXXtzOSLJlHcOStIGFXtpjEbJX2vViS45kH_btK-NtKIGcRmi--Uf6CPmM8BUBxLcIwCnPAUVOETCHD2SNnNGcArIrsgZgmJeirFbkOsYTAFBe0U9kRSUTnIFYkz9b03VTp0M2-CHVsfUuZtrts_FoQu-jcbF1h6w3zVG7NvYx83buZcfz4Mej7nTfNhc4mMMc4cM5a4wbTbghH63uorm91A35_fT4a_sj3_38_rx92OUNZ9WYa7SIVHIoBGW2kjYdKZO1BtBlzW1VSmkQC6vR1OkaS401482-KLSmlrMN-bLkDsG_TCaOqm9jk36mnfFTVCglTa6YLBJ6_wY9-Sm49LqZYlxwUYlE4UI1wccYjFVDaHsdzgpBze7V4l4l92p2ryDN3F2Sp7o3-9eJf7ITQBcgppY7mPDf6ndT_wLFLI-M</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Siemens, Jan</creator><creator>Kamm, Gretel B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9051-9217</orcidid></search><sort><creationdate>20180501</creationdate><title>Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center</title><author>Siemens, Jan ; Kamm, Gretel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a1f1129405723f89f940239ba00a6b4f8699e115fa1eb9ba16a1b34cd55aa2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adipose Tissue, Brown - metabolism</topic><topic>Adipose Tissue, Brown - physiology</topic><topic>Animals</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body temperature</topic><topic>Cell Biology</topic><topic>Energy Metabolism</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hypothalamus (anterior)</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - physiology</topic><topic>Invited Review</topic><topic>Medulla Oblongata - cytology</topic><topic>Medulla Oblongata - physiology</topic><topic>Molecular Medicine</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Preoptic area</topic><topic>Receptors</topic><topic>Synaptic Transmission</topic><topic>Temperature effects</topic><topic>Thermogenesis</topic><topic>Thermoregulation</topic><topic>Thermosensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siemens, Jan</creatorcontrib><creatorcontrib>Kamm, Gretel B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siemens, Jan</au><au>Kamm, Gretel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>470</volume><issue>5</issue><spage>809</spage><epage>822</epage><pages>809-822</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and—based on these inputs––controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29374307</pmid><doi>10.1007/s00424-017-2101-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9051-9217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2018-05, Vol.470 (5), p.809-822
issn 0031-6768
1432-2013
language eng
recordid cdi_proquest_miscellaneous_1992004395
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adipose Tissue, Brown - metabolism
Adipose Tissue, Brown - physiology
Animals
Biological activity
Biomedical and Life Sciences
Biomedicine
Body temperature
Cell Biology
Energy Metabolism
Homeostasis
Human Physiology
Humans
Hypothalamus (anterior)
Hypothalamus - cytology
Hypothalamus - physiology
Invited Review
Medulla Oblongata - cytology
Medulla Oblongata - physiology
Molecular Medicine
Neurons - physiology
Neurosciences
Preoptic area
Receptors
Synaptic Transmission
Temperature effects
Thermogenesis
Thermoregulation
Thermosensing
title Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20populations%20and%20thermosensing%20mechanisms%20of%20the%20hypothalamic%20thermoregulatory%20center&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Siemens,%20Jan&rft.date=2018-05-01&rft.volume=470&rft.issue=5&rft.spage=809&rft.epage=822&rft.pages=809-822&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-017-2101-0&rft_dat=%3Cproquest_cross%3E1993474787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993474787&rft_id=info:pmid/29374307&rfr_iscdi=true