Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy

Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-02, Vol.122 (5), p.1270-1282
Hauptverfasser: Ho, Jia-Jung, Ghosh, Ayanjeet, Zhang, Tianqi O., Zanni, Martin T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1282
container_issue 5
container_start_page 1270
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 122
creator Ho, Jia-Jung
Ghosh, Ayanjeet
Zhang, Tianqi O.
Zanni, Martin T.
description Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.
doi_str_mv 10.1021/acs.jpca.7b11934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1992003646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992003646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-13859b44034f1498bcb56d1f897c281bbc6381434a79c6b92dfb2df75f463e443</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EolDYs0JesiDFr7jxshT6kCpRKXQdxY7TpkriYCeL7LgCV-EgHIKTkD5gx2I0M9L__5r5ALjBaIARwQ-xcoNtpeLBUGIsKDsBF9gnyPMJ9k-7GQXC8zkVPXDp3BYhhClh56BHBOWCE3YB6pmutTVrXWrTODgq2txkCfz6_H7_CDda13Bp8rYwtto4OE90WWdpphNoSjhrk70RPpoygUtrClNn5RqGjU1jpR1cud1KnmA4mcKw0qq2xilTtVfgLI1zp6-PvQ9Wk-fX8cxbvEzn49HCiynltYdp4AvJGKIsxUwEUkmfJzgNxFCRAEupOA0woyweCsWlIEkquxr6KeNUM0b74O6QW1nz1mhXR0XmlM7zeP9thIUgCFHeyfsAHaSqu9FZnUaVzYrYthFG0Y511LGOdqyjI-vOcntMb2Shkz_DL9xOcH8Q7K2msWX37P95P__sjPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992003646</pqid></control><display><type>article</type><title>Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy</title><source>ACS Publications</source><creator>Ho, Jia-Jung ; Ghosh, Ayanjeet ; Zhang, Tianqi O. ; Zanni, Martin T.</creator><creatorcontrib>Ho, Jia-Jung ; Ghosh, Ayanjeet ; Zhang, Tianqi O. ; Zanni, Martin T.</creatorcontrib><description>Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b11934</identifier><identifier>PMID: 29369624</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2018-02, Vol.122 (5), p.1270-1282</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-13859b44034f1498bcb56d1f897c281bbc6381434a79c6b92dfb2df75f463e443</citedby><cites>FETCH-LOGICAL-a336t-13859b44034f1498bcb56d1f897c281bbc6381434a79c6b92dfb2df75f463e443</cites><orcidid>0000-0001-7191-9768 ; 0000-0002-9767-8082 ; 0000-0001-9458-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.7b11934$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.7b11934$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29369624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Jia-Jung</creatorcontrib><creatorcontrib>Ghosh, Ayanjeet</creatorcontrib><creatorcontrib>Zhang, Tianqi O.</creatorcontrib><creatorcontrib>Zanni, Martin T.</creatorcontrib><title>Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EolDYs0JesiDFr7jxshT6kCpRKXQdxY7TpkriYCeL7LgCV-EgHIKTkD5gx2I0M9L__5r5ALjBaIARwQ-xcoNtpeLBUGIsKDsBF9gnyPMJ9k-7GQXC8zkVPXDp3BYhhClh56BHBOWCE3YB6pmutTVrXWrTODgq2txkCfz6_H7_CDda13Bp8rYwtto4OE90WWdpphNoSjhrk70RPpoygUtrClNn5RqGjU1jpR1cud1KnmA4mcKw0qq2xilTtVfgLI1zp6-PvQ9Wk-fX8cxbvEzn49HCiynltYdp4AvJGKIsxUwEUkmfJzgNxFCRAEupOA0woyweCsWlIEkquxr6KeNUM0b74O6QW1nz1mhXR0XmlM7zeP9thIUgCFHeyfsAHaSqu9FZnUaVzYrYthFG0Y511LGOdqyjI-vOcntMb2Shkz_DL9xOcH8Q7K2msWX37P95P__sjPI</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Ho, Jia-Jung</creator><creator>Ghosh, Ayanjeet</creator><creator>Zhang, Tianqi O.</creator><creator>Zanni, Martin T.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7191-9768</orcidid><orcidid>https://orcid.org/0000-0002-9767-8082</orcidid><orcidid>https://orcid.org/0000-0001-9458-3910</orcidid></search><sort><creationdate>20180208</creationdate><title>Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy</title><author>Ho, Jia-Jung ; Ghosh, Ayanjeet ; Zhang, Tianqi O. ; Zanni, Martin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-13859b44034f1498bcb56d1f897c281bbc6381434a79c6b92dfb2df75f463e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Jia-Jung</creatorcontrib><creatorcontrib>Ghosh, Ayanjeet</creatorcontrib><creatorcontrib>Zhang, Tianqi O.</creatorcontrib><creatorcontrib>Zanni, Martin T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Jia-Jung</au><au>Ghosh, Ayanjeet</au><au>Zhang, Tianqi O.</au><au>Zanni, Martin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>122</volume><issue>5</issue><spage>1270</spage><epage>1282</epage><pages>1270-1282</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29369624</pmid><doi>10.1021/acs.jpca.7b11934</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7191-9768</orcidid><orcidid>https://orcid.org/0000-0002-9767-8082</orcidid><orcidid>https://orcid.org/0000-0001-9458-3910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-02, Vol.122 (5), p.1270-1282
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1992003646
source ACS Publications
title Heterogeneous Amyloid β‑Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Amyloid%20%CE%B2%E2%80%91Sheet%20Polymorphs%20Identified%20on%20Hydrogen%20Bond%20Promoting%20Surfaces%20Using%202D%20SFG%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Ho,%20Jia-Jung&rft.date=2018-02-08&rft.volume=122&rft.issue=5&rft.spage=1270&rft.epage=1282&rft.pages=1270-1282&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b11934&rft_dat=%3Cproquest_cross%3E1992003646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992003646&rft_id=info:pmid/29369624&rfr_iscdi=true